A machine learning route between band mapping and band structure

被引:12
|
作者
Xian, R. Patrick [1 ,3 ]
Stimper, Vincent [2 ]
Zacharias, Marios [1 ,4 ]
Dendzik, Maciej [1 ,5 ]
Dong, Shuo [1 ]
Beaulieu, Samuel [1 ,6 ]
Scholkopf, Bernhard [2 ]
Wolf, Martin [1 ]
Rettig, Laurenz [1 ]
Carbogno, Christian [1 ]
Bauer, Stefan [2 ,7 ]
Ernstorfer, Ralph [1 ]
机构
[1] Fritz Haber Inst Max Planck Soc, Berlin, Germany
[2] Max Planck Inst Intelligent Syst, Dept Empir Inference, Tubingen, Germany
[3] UCL, Dept Mech Engn, London, England
[4] Univ Rennes, Inst FOTON, CNRS, INSA Rennes, Rennes, France
[5] KTH Royal Inst Technol, Dept Appl Phys, Stockholm, Sweden
[6] Univ Bordeaux, CELIA, CNRS, CEA, Talence, France
[7] KTH Royal Inst Technol, Div Decis & Control Syst, Stockholm, Sweden
来源
NATURE COMPUTATIONAL SCIENCE | 2023年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
ELECTRON-GAS; PHOTOEMISSION; REPRESENTATION; SPECTROSCOPY; SURFACE; SPACE;
D O I
10.1038/s43588-022-00382-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The electronic band structure and crystal structure are the two complementary identifiers of solid-state materials. Although convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting the quasiparticle dispersion (closely related to band structure) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, here we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band-structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data.
引用
收藏
页码:101 / 114
页数:14
相关论文
共 50 条
  • [21] 'Big Band Machine'
    Rawls, A
    NEW ORLEANS REVIEW, 1997, 23 (02): : 23 - 23
  • [22] Accurate band gap prediction based on an interpretable ?-machine learning
    Zhang, Lingyao
    Su, Tianhao
    Li, Musen
    Jia, Fanhao
    Hu, Shuobo
    Zhang, Peihong
    Ren, Wei
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [23] Orchestrating In-Band Data Plane Telemetry With Machine Learning
    Hohemberger, Rumenigue
    Castro, Ariel G.
    Vogt, Francisco G.
    Mansilha, Rodrigo B.
    Lorenzon, Arthur F.
    Rossi, Fabio D.
    Luizelli, Marcelo C.
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (12) : 2247 - 2251
  • [24] Band structure mapping of bilayer graphene via quasiparticle scattering
    Yankowitz, Matthew
    Wang, Joel I-Jan
    Li, Suchun
    Birdwell, A. Glen
    Chen, Yu-An
    Watanabe, Kenji
    Taniguchi, Takashi
    Quek, Su Ying
    Jarillo-Herrero, Pablo
    LeRoy, Brian J.
    APL MATERIALS, 2014, 2 (09):
  • [25] Machine learning predictions of band gap and band edge for (GaN)1-x(ZnO)x solid solution using crystal structure information
    Xu, Jingcheng
    Wang, Qianli
    Yuan, Quan
    Chen, Huilin
    Wang, Shunyao
    Fan, Yang
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (19) : 7986 - 7994
  • [26] Learning from machine learning: the case of band-gap directness in semiconductors
    Ogoshi, Elton
    Popolin-Neto, Mario
    Acosta, Carlos Mera
    Nascimento, Gabriel M.
    Rodrigues, Joao N. B.
    Oliveira Jr, Osvaldo N.
    Paulovich, Fernando V.
    Dalpian, Gustavo M.
    DISCOVER MATERIALS, 2024, 4 (01):
  • [27] Electronic band structure phase diagram of 3D carbon allotropes from machine learning
    Wu, Wei
    Gong, Sheng
    Sun, Qiang
    DIAMOND AND RELATED MATERIALS, 2020, 108
  • [28] HUMAN CHROMOSOME BAND MAPPING
    DRETS, ME
    LANCET, 1975, 2 (7943): : 1035 - 1035
  • [29] Machine Learning Applied to Topological Mapping for Structure Recognition
    Rocha, Francisco B. de S.
    Lima, Bruno V. A.
    Wilson, L. R.
    Rocha, Diego P.
    Farias, Karoline de M.
    Rabelo, Ricardo de A. L.
    Santana, Andre M.
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 1872 - 1877
  • [30] Machine Learning Method to Automate Structure Name Mapping
    Sleeman, W.
    Nalluri, J.
    Khajamoinuddin, S.
    Ghosh, P.
    Hagan, M.
    Palta, J.
    Kapoor, R.
    MEDICAL PHYSICS, 2019, 46 (06) : E276 - E276