Bi-primitive 2-arc-transitive bi-Cayley graphs

被引:0
|
作者
Li, Jing Jian [1 ]
Zhang, Xiao Qian [1 ]
Zhou, Jin-Xin [2 ]
机构
[1] Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-Cayley graph; Biprimitive; 2-arc-transitive; ARC-TRANSITIVE GRAPHS; PERMUTATION-GROUPS; ORDER; THEOREM;
D O I
10.1007/s10801-024-01297-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bipartite graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a bi-Cayley graph over a group H if H <= Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\leqslant \textrm{Aut}\Gamma $$\end{document} acts regularly on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. A bi-Cayley graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is said to be a normal bi-Cayley graph over H if H ⊴Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\unlhd \textrm{Aut}\Gamma $$\end{document}, and bi-primitive if the bipartition preserving subgroup of Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Aut}\Gamma $$\end{document} acts primitively on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. In this paper, a classification is given for 2-arc-transitive bi-Cayley graphs which are bi-primitive and non-normal.
引用
收藏
页码:711 / 734
页数:24
相关论文
共 50 条
  • [41] Cubic edge-transitive bi-Cayley graphs over inner-abelian p-groups
    Qin, Yan-Li
    Zhou, Jin-Xin
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 1973 - 1984
  • [42] Unitary homogeneous bi-Cayley graphs over finite commutative rings
    Liu, Xiaogang
    Yan, Chengxin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (09)
  • [43] The smallest vertex-primitive 2-arc-transitive digraph
    Yin, Fu-Gang
    Feng, Yan-Quan
    Xia, Binzhou
    JOURNAL OF ALGEBRA, 2023, 626 : 1 - 38
  • [44] Maximally connected and super arc-connected Bi-Cayley digraphs
    Liu, Thomas Y. H.
    Meng, J. X.
    ARS COMBINATORIA, 2016, 124 : 21 - 31
  • [45] Countable locally 2-arc-transitive bipartite graphs
    Gray, R. D.
    Truss, J. K.
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 39 : 122 - 147
  • [46] Symmetric bi-Cayley graphs on nonabelian simple groups with prime valency
    Zhang, Yingnan
    Pan, Jiangmin
    Wang, Chao
    Huang, Junjie
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [47] Consistent cycles in 1/2-arc-transitive graphs
    Boben, Marko
    Miklavic, Stefko
    Potocnik, Primoz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [48] Perfect state transfer on bi-Cayley graphs over abelian groups
    Wang, Shixin
    Feng, Tao
    DISCRETE MATHEMATICS, 2023, 346 (06)
  • [49] 2-Arc-transitive metacyclic covers of complete graphs
    Xu, Wenqin
    Du, Shaofei
    Kwak, Jin Ho
    Xu, Mingyao
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 111 : 54 - 74
  • [50] Locally 2-arc-transitive complete bipartite graphs
    Fan, Wenwen
    Leemans, Dimitri
    Li, Cai Heng
    Pan, Jiangmin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (03) : 683 - 699