Bi-primitive 2-arc-transitive bi-Cayley graphs

被引:0
|
作者
Li, Jing Jian [1 ]
Zhang, Xiao Qian [1 ]
Zhou, Jin-Xin [2 ]
机构
[1] Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-Cayley graph; Biprimitive; 2-arc-transitive; ARC-TRANSITIVE GRAPHS; PERMUTATION-GROUPS; ORDER; THEOREM;
D O I
10.1007/s10801-024-01297-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bipartite graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a bi-Cayley graph over a group H if H <= Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\leqslant \textrm{Aut}\Gamma $$\end{document} acts regularly on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. A bi-Cayley graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is said to be a normal bi-Cayley graph over H if H ⊴Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\unlhd \textrm{Aut}\Gamma $$\end{document}, and bi-primitive if the bipartition preserving subgroup of Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Aut}\Gamma $$\end{document} acts primitively on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. In this paper, a classification is given for 2-arc-transitive bi-Cayley graphs which are bi-primitive and non-normal.
引用
收藏
页码:711 / 734
页数:24
相关论文
共 50 条
  • [31] Cubic bi-Cayley graphs Over abelian groups
    Zhou, Jin-Xin
    Feng, Yan-Quan
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 679 - 693
  • [32] On the extendability of Bi-Cayley graphs of finite abelian groups
    Luo, Yanfeng
    Gao, Xing
    DISCRETE MATHEMATICS, 2009, 309 (20) : 5943 - 5949
  • [33] ON EDGE-HAMILTONIAN PROPERTY OF BI-CAYLEY GRAPHS
    Yingbin Ma
    Haifeng Li
    Annals of Applied Mathematics, 2015, 31 (04) : 423 - 428
  • [34] Cubic non-Cayley vertex-transitive bi-Cayley graphs over a regular p-group
    Zhou, Jin-Xin
    Feng, Yan-Quan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [35] A CLASSIFICATION OF FINITE GROUPS WITH INTEGRAL BI-CAYLEY GRAPHS
    Arezoomand, Majid
    Taeri, Bijan
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (04) : 55 - 61
  • [36] Vertex-Primitive1/2-arc-transitive graphs of smallest order
    Du, SF
    Xu, MY
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (01) : 163 - 171
  • [37] Tetravalent 2-arc-transitive Cayley graphs on non-abelian simple groups
    Du, Jia-Li
    Feng, Yan-Quan
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (11) : 4565 - 4574
  • [38] On 2-arc-transitive covers of complete graphs
    Du, SF
    Marusic, D
    Waller, AO
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) : 276 - 290
  • [39] On 2-arc-transitive graphs of order kpn
    Morgan, Luke
    Swartz, Eric
    Verret, Gabriel
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 117 : 77 - 87
  • [40] On cubic semisymmetric bi-Cayley graphs on nonabelian simple groups
    Pan, Jiangmin
    Zhang, Yingnan
    AIMS MATHEMATICS, 2022, 7 (07): : 12689 - 12701