Bi-primitive 2-arc-transitive bi-Cayley graphs

被引:0
|
作者
Li, Jing Jian [1 ]
Zhang, Xiao Qian [1 ]
Zhou, Jin-Xin [2 ]
机构
[1] Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-Cayley graph; Biprimitive; 2-arc-transitive; ARC-TRANSITIVE GRAPHS; PERMUTATION-GROUPS; ORDER; THEOREM;
D O I
10.1007/s10801-024-01297-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bipartite graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a bi-Cayley graph over a group H if H <= Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\leqslant \textrm{Aut}\Gamma $$\end{document} acts regularly on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. A bi-Cayley graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is said to be a normal bi-Cayley graph over H if H ⊴Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\unlhd \textrm{Aut}\Gamma $$\end{document}, and bi-primitive if the bipartition preserving subgroup of Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Aut}\Gamma $$\end{document} acts primitively on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. In this paper, a classification is given for 2-arc-transitive bi-Cayley graphs which are bi-primitive and non-normal.
引用
收藏
页码:711 / 734
页数:24
相关论文
共 50 条
  • [21] 2-Arc-transitive hexavalent Cayley graphs on nonabelian simple groups
    Pan, Jiangmin
    Wu, Cixuan
    Zhang, Yingnan
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (11) : 4891 - 4905
  • [22] On cubic bi-Cayley graphs of p -groups
    Li, Na
    Kwon, Young Soo
    Zhou, Jin-Xin
    ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (04)
  • [23] Isomorphisms of bi-Cayley graphs on Dihedral groups
    Arezoomand, Majid
    Behmaram, Afshin
    Ghasemi, Mohsen
    Raeighasht, Parivash
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (04)
  • [24] The Diameters of Almost All Bi-Cayley Graphs
    Deng, Xingchao
    Meng, Jixiang
    ARS COMBINATORIA, 2013, 111 : 65 - 74
  • [25] On isomorphisms of small order bi-Cayley graphs
    Jin, Wei
    Liu, Wei Jun
    UTILITAS MATHEMATICA, 2013, 92 : 317 - 327
  • [26] Normal edge-transitive and 1/2-arc-transitive semi-Cayley graphs
    Ashrafi, A. R.
    Soleimani, B.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1287 - 1299
  • [27] On basic 2-arc-transitive graphs
    Zai Ping Lu
    Ruo Yu Song
    Journal of Algebraic Combinatorics, 2023, 58 : 1081 - 1093
  • [28] Semisymmetric cubic graphs constructed from bi-Cayley graphs of An
    Lu, Zaiping
    Wang, Changqun
    Xu, Mingyao
    ARS COMBINATORIA, 2006, 80 : 177 - 187
  • [29] On basic 2-arc-transitive graphs
    Lu, Zai Ping
    Song, Ruo Yu
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (04) : 1081 - 1093
  • [30] A classification of connected cubic vertex-transitive bi-Cayley graphs over semidihedral group
    Cao, Jianji
    Kwon, Young Soo
    Zhang, Mimi
    ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (04) : 1 - 13