机构:
Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R ChinaGuangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
Li, Jing Jian
[1
]
Zhang, Xiao Qian
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R ChinaGuangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
Zhang, Xiao Qian
[1
]
Zhou, Jin-Xin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R ChinaGuangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
Zhou, Jin-Xin
[2
]
机构:
[1] Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
A bipartite graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a bi-Cayley graph over a group H if H <= Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\leqslant \textrm{Aut}\Gamma $$\end{document} acts regularly on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. A bi-Cayley graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is said to be a normal bi-Cayley graph over H if H ⊴Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\unlhd \textrm{Aut}\Gamma $$\end{document}, and bi-primitive if the bipartition preserving subgroup of Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Aut}\Gamma $$\end{document} acts primitively on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. In this paper, a classification is given for 2-arc-transitive bi-Cayley graphs which are bi-primitive and non-normal.
机构:
Shanxi Univ Finance & Econ, Sch Appl Math, Taiyuan 030006, Shanxi, Peoples R ChinaShanxi Univ Finance & Econ, Sch Appl Math, Taiyuan 030006, Shanxi, Peoples R China
Cao, Jianji
Kwon, Young Soo
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Dept Math, Gyongsan 38541, South KoreaShanxi Univ Finance & Econ, Sch Appl Math, Taiyuan 030006, Shanxi, Peoples R China
Kwon, Young Soo
Zhang, Mimi
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Peoples R ChinaShanxi Univ Finance & Econ, Sch Appl Math, Taiyuan 030006, Shanxi, Peoples R China