On the finite element approximation of the obstacle problem of a Naghdi shell

被引:1
|
作者
Khenfar, Sokina [1 ]
Nicaise, Serge [2 ]
Merabet, Ismail [1 ]
机构
[1] Univ Kasdi Merbah, Lab Math Appl, BP 511, Ouargla 30000, Algeria
[2] Univ Polytech Hauts De France, CERAMATHS, CNRS, FR 2037,DEMATHS, F-59313 Valenciennes 9, France
关键词
Contact problem; Naghdi shell; Finite element; A priori error analysis; Iterative method; MODEL; CONVERGENCE; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.cam.2023.115670
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the finite element approximation of two equivalent formulations of an obstacle problem of a Naghdi shell. This second one is a new formulation of the continuous problem set on the unconstrained space of the displacement field and the rotation. Namely in order to enforce the tangency requirement on the rotation and the inequality constraint, two Lagrange multipliers are introduced. In addition to existence and uniqueness results of solutions of the continuous and the discrete problems we derive a priori error estimates. We further prove the convergence of the Uzawa algorithm associated with this variational inequality. Numerical tests that validate and illustrate our approach are given.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] On a finite element approximation for the elastoplastic torsion problem
    Chouly, Franz
    Hild, Patrick
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [22] A finite element approximation of an image segmentation problem
    Cortesani, G
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02): : 243 - 259
  • [23] Finite Element Approximation for the Fractional Eigenvalue Problem
    Juan Pablo Borthagaray
    Leandro M. Del Pezzo
    Sandra Martínez
    Journal of Scientific Computing, 2018, 77 : 308 - 329
  • [24] Finite Element Approximation for the Fractional Eigenvalue Problem
    Pablo Borthagaray, Juan
    Del Pezzo, Leandro M.
    Martinez, Sandra
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 308 - 329
  • [25] FINITE ELEMENT APPROXIMATION OF THE BENARD PROBLEM.
    Krishnan, R.
    1600, (01):
  • [26] FINITE ELEMENT APPROXIMATION OF AN OPTIMAL DESIGN PROBLEM
    Chakib, A.
    Nachaoui, A.
    Nachaoui, M.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2012, 11 (01) : 19 - 26
  • [27] Finite element approximation of nonlocal parabolic problem
    Chaudhary, Sudhakar
    Srivastava, Vimal
    Kumar, V. V. K. Srinivas
    Srinivasan, Balaji
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (03) : 786 - 813
  • [28] Quadratic finite element approximation of the Signorini problem
    Belhachmi, Z
    Ben Belgacem, F
    MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 83 - 104
  • [29] Finite element method in equilibrium problems for a nonlinear shallow shell with an obstacle
    Cloud, Michael J.
    Lebedev, Leonid P.
    Ponce-Vanegas, Felipe E.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2014, 80 : 43 - 52
  • [30] On Finite Element Formulations for the Obstacle Problem - Mixed and Stabilised Methods
    Gustafsson, Tom
    Stenberg, Rolf
    Videman, Juha
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (03) : 413 - 429