On the finite element approximation of the obstacle problem of a Naghdi shell

被引:1
|
作者
Khenfar, Sokina [1 ]
Nicaise, Serge [2 ]
Merabet, Ismail [1 ]
机构
[1] Univ Kasdi Merbah, Lab Math Appl, BP 511, Ouargla 30000, Algeria
[2] Univ Polytech Hauts De France, CERAMATHS, CNRS, FR 2037,DEMATHS, F-59313 Valenciennes 9, France
关键词
Contact problem; Naghdi shell; Finite element; A priori error analysis; Iterative method; MODEL; CONVERGENCE; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.cam.2023.115670
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the finite element approximation of two equivalent formulations of an obstacle problem of a Naghdi shell. This second one is a new formulation of the continuous problem set on the unconstrained space of the displacement field and the rotation. Namely in order to enforce the tangency requirement on the rotation and the inequality constraint, two Lagrange multipliers are introduced. In addition to existence and uniqueness results of solutions of the continuous and the discrete problems we derive a priori error estimates. We further prove the convergence of the Uzawa algorithm associated with this variational inequality. Numerical tests that validate and illustrate our approach are given.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] FINITE ELEMENT METHODS FOR THE DISPLACEMENT OBSTACLE PROBLEM OF CLAMPED PLATES
    Brenner, Susanne C.
    Sung, Li-Yeng
    Zhang, Yi
    MATHEMATICS OF COMPUTATION, 2012, 81 (279) : 1247 - 1262
  • [32] Galerkin least squares finite element method for the obstacle problem
    Burman, Erik
    Hansbo, Peter
    Larson, Mats G.
    Stenberg, Rolf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 : 362 - 374
  • [33] Convergence analysis of finite element method for a parabolic obstacle problem
    Gudi, Thirupathi
    Majumder, Papri
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 357 : 85 - 102
  • [34] Morley finite element method for the von Karman obstacle problem
    Carstensen, Carsten
    Gaddam, Sharat
    Nataraj, Neela
    Pani, Amiya K.
    Shylaja, Devika
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05): : 1873 - 1894
  • [35] Isoparametric finite element approximation for a boundary flux problem
    Andreev, AB
    Todorov, TD
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2006, 16 (01) : 46 - 66
  • [36] Finite element approximation for the viscoelastic fluid motion problem
    He, YN
    Lin, YP
    Shen, SSP
    Sun, WW
    Tait, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (02) : 201 - 222
  • [37] SUPERCONVERGENCE OF THE MORTAR FINITE ELEMENT APPROXIMATION TO A PARABOLIC PROBLEM
    GU Hong ZHOU Aihui(Institute of Systems Science
    SystemsScienceandMathematicalSciences, 1999, (04) : 350 - 356
  • [38] A FINITE-ELEMENT APPROXIMATION OF THE BENARD-PROBLEM
    KRISHNAN, R
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1985, 1 (06): : 317 - 324
  • [39] Finite element approximation of a free boundary plasma problem
    Jintao Cui
    Thirupathi Gudi
    Advances in Computational Mathematics, 2017, 43 : 517 - 535
  • [40] ON THE FINITE-ELEMENT APPROXIMATION OF SOLUTIONS FOR RADIATION PROBLEM
    SARANEN, J
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1983, 17 (02): : 195 - 208