Antichirality Emergent in Type-II Weyl Phononic Crystals

被引:8
|
作者
Yan, Mou [1 ,6 ]
Huang, Xueqin [2 ]
Wu, Jien [2 ]
Deng, Weiyin [3 ,4 ]
Lu, Jiuyang [3 ,4 ]
Liu, Zhengyou [3 ,4 ,5 ]
机构
[1] Zhengzhou Univ, Sch Phys & Microelect, Key Lab Mat Phys Minist Educ, Zhengzhou 450001, Peoples R China
[2] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510640, Peoples R China
[3] Wuhan Univ, Key Lab Artificial Micro & Nanostruct Minist Educ, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[5] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
[6] Henan Acad Sci, Inst Quantum Mat & Phys, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMIMETAL;
D O I
10.1103/PhysRevLett.130.266304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chiral anomaly as the hallmark feature lies in the heart of the researches for Weyl semimetal. It is rooted in the zeroth Landau level of the system with an applied magnetic field. Chirality or antichirality characterizes the propagation property of the one-way zeroth Landau level mode, and antichirality means an opposite group velocity compared to the case of chirality. Chirality is commonly observed for Weyl semimetals. Interestingly, the type-II Weyl point, with the overtilted dispersion, may flip the chirality to the antichirality, which, however, is yet to be evidenced despite numerous previous experimental efforts. Here, we implement the type-II Weyl point in sonic crystals, and by creating the pseudomagnetic fields with geometric deformation, the chirality flip of zeroth Landau levels is unambiguously demonstrated. Our Letter unveils the novel antichiral transport in the presence of time-reversal symmetry, and paves the way toward the state-of-the-art manipulation of sound waves.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Type-II Dirac phonons in a two-dimensional phononic crystal
    Xu, Changqing
    Mei, Jun
    Ma, Guancong
    Wu, Ying
    APL MATERIALS, 2024, 12 (04)
  • [42] A comparison of magnetoconductivities between type-I and type-II Weyl semimetals
    Morishima, K.
    Kondo, K.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (12)
  • [43] Coexistence of Type-I and Type-II Weyl Points in the Weyl-Semimetal OsC2
    Zhang, Minping
    Yang, Zongxian
    Wang, Guangtao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (06): : 3533 - 3538
  • [44] Ternary compound HfCuP: An excellent Weyl semimetal with the coexistence of type-I and type-II Weyl nodes
    Meng, Weizhen
    Zhang, Xiaoming
    He, Tingli
    Jin, Lei
    Dai, Xuefang
    Liu, Ying
    Liu, Guodong
    JOURNAL OF ADVANCED RESEARCH, 2020, 24 : 523 - 528
  • [45] Signature of type-II Weyl semimetal phase in MoTe2
    J. Jiang
    Z.K. Liu
    Y. Sun
    H.F. Yang
    C.R. Rajamathi
    Y.P. Qi
    L.X. Yang
    C. Chen
    H. Peng
    C-C. Hwang
    S.Z. Sun
    S-K. Mo
    I. Vobornik
    J. Fujii
    S.S.P. Parkin
    C. Felser
    B.H. Yan
    Y.L. Chen
    Nature Communications, 8
  • [46] Electrodynamic response of the type-II Weyl semimetal YbMnBi2
    Chinotti, M.
    Pal, A.
    Ren, W. J.
    Petrovic, C.
    Degiorgi, L.
    PHYSICAL REVIEW B, 2016, 94 (24)
  • [47] Symmetry-Protected Ideal Type-II Weyl Phonons in CdTe
    Xia, B. W.
    Wang, R.
    Chen, Z. J.
    Zhao, Y. J.
    Xu, H.
    PHYSICAL REVIEW LETTERS, 2019, 123 (06)
  • [48] Generating controllable type-II Weyl points via periodic driving
    Bomantara, Raditya Weda
    Gong, Jiangbin
    PHYSICAL REVIEW B, 2016, 94 (23)
  • [49] Magnetotransport study in type-II Weyl semimetal TaIrTe4
    Kumar, P.
    Nagpal, V
    Bhardwaj, A.
    Sudesh
    Patnaik, S.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [50] Interaction-induced phase transitions of type-II Weyl semimetals
    Wang, Yi-Xiang
    Li, Fuxiang
    Bian, Baoan
    PHYSICAL REVIEW B, 2017, 96 (16)