Antichirality Emergent in Type-II Weyl Phononic Crystals

被引:8
|
作者
Yan, Mou [1 ,6 ]
Huang, Xueqin [2 ]
Wu, Jien [2 ]
Deng, Weiyin [3 ,4 ]
Lu, Jiuyang [3 ,4 ]
Liu, Zhengyou [3 ,4 ,5 ]
机构
[1] Zhengzhou Univ, Sch Phys & Microelect, Key Lab Mat Phys Minist Educ, Zhengzhou 450001, Peoples R China
[2] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510640, Peoples R China
[3] Wuhan Univ, Key Lab Artificial Micro & Nanostruct Minist Educ, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[5] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
[6] Henan Acad Sci, Inst Quantum Mat & Phys, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMIMETAL;
D O I
10.1103/PhysRevLett.130.266304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chiral anomaly as the hallmark feature lies in the heart of the researches for Weyl semimetal. It is rooted in the zeroth Landau level of the system with an applied magnetic field. Chirality or antichirality characterizes the propagation property of the one-way zeroth Landau level mode, and antichirality means an opposite group velocity compared to the case of chirality. Chirality is commonly observed for Weyl semimetals. Interestingly, the type-II Weyl point, with the overtilted dispersion, may flip the chirality to the antichirality, which, however, is yet to be evidenced despite numerous previous experimental efforts. Here, we implement the type-II Weyl point in sonic crystals, and by creating the pseudomagnetic fields with geometric deformation, the chirality flip of zeroth Landau levels is unambiguously demonstrated. Our Letter unveils the novel antichiral transport in the presence of time-reversal symmetry, and paves the way toward the state-of-the-art manipulation of sound waves.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Intrinsic Anomalous Hall Effect in Type-II Weyl Semimetals
    Zyuzin, A. A.
    Tiwari, R. P.
    JETP LETTERS, 2016, 103 (11) : 717 - 722
  • [32] Black hole and hawking radiation by type-II Weyl fermions
    G. E. Volovik
    JETP Letters, 2016, 104 : 645 - 648
  • [33] Black Hole and Hawking Radiation by Type-II Weyl Fermions
    Volovik, G. E.
    JETP LETTERS, 2016, 104 (09) : 645 - 648
  • [34] Chiral anomaly and longitudinal magnetotransport in type-II Weyl semimetals
    Sharma, Girish
    Goswami, Pallab
    Tewari, Sumanta
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [35] Global phase diagram of disordered type-II Weyl semimetals
    Wu, Yijia
    Liu, Haiwen
    Jiang, Hua
    Xie, X. C.
    PHYSICAL REVIEW B, 2017, 96 (02)
  • [36] Evidence for correlation effects in noncentrosymmetric type-II Weyl semimetals
    Corasaniti, M.
    Yang, R.
    Hu, Z.
    Abeykoon, M.
    Petrovic, C.
    Degiorgi, L.
    PHYSICAL REVIEW B, 2021, 104 (12)
  • [37] MoTe2: A Type-II Weyl Topological Metal
    Wang, Zhijun
    Gresch, Dominik
    Soluyanov, Alexey A.
    Xie, Weiwei
    Kushwaha, S.
    Dai, Xi
    Troyer, Matthias
    Cava, Robert J.
    Bernevig, B. Andrei
    PHYSICAL REVIEW LETTERS, 2016, 117 (05)
  • [38] Magnetic Breakdown and Klein Tunneling in a Type-II Weyl Semimetal
    O'Brien, T. E.
    Diez, M.
    Beenakker, C. W. J.
    PHYSICAL REVIEW LETTERS, 2016, 116 (23)
  • [39] Type-II Dirac points and edge transports in phononic crystal plates
    Luo Quan-Bin
    Huang Xue-Qin
    Deng Wei-Yin
    Wu Ying
    Lu Jiu-Yang
    Liu Zheng-You
    ACTA PHYSICA SINICA, 2021, 70 (18)
  • [40] Spin susceptibilities in magnetic type-I and type-II Weyl semimetals
    Xiong, Feng
    Han, Xingjie
    Honerkamp, Carsten
    PHYSICAL REVIEW B, 2021, 104 (11)