Antichirality Emergent in Type-II Weyl Phononic Crystals

被引:8
|
作者
Yan, Mou [1 ,6 ]
Huang, Xueqin [2 ]
Wu, Jien [2 ]
Deng, Weiyin [3 ,4 ]
Lu, Jiuyang [3 ,4 ]
Liu, Zhengyou [3 ,4 ,5 ]
机构
[1] Zhengzhou Univ, Sch Phys & Microelect, Key Lab Mat Phys Minist Educ, Zhengzhou 450001, Peoples R China
[2] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510640, Peoples R China
[3] Wuhan Univ, Key Lab Artificial Micro & Nanostruct Minist Educ, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[5] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
[6] Henan Acad Sci, Inst Quantum Mat & Phys, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMIMETAL;
D O I
10.1103/PhysRevLett.130.266304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chiral anomaly as the hallmark feature lies in the heart of the researches for Weyl semimetal. It is rooted in the zeroth Landau level of the system with an applied magnetic field. Chirality or antichirality characterizes the propagation property of the one-way zeroth Landau level mode, and antichirality means an opposite group velocity compared to the case of chirality. Chirality is commonly observed for Weyl semimetals. Interestingly, the type-II Weyl point, with the overtilted dispersion, may flip the chirality to the antichirality, which, however, is yet to be evidenced despite numerous previous experimental efforts. Here, we implement the type-II Weyl point in sonic crystals, and by creating the pseudomagnetic fields with geometric deformation, the chirality flip of zeroth Landau levels is unambiguously demonstrated. Our Letter unveils the novel antichiral transport in the presence of time-reversal symmetry, and paves the way toward the state-of-the-art manipulation of sound waves.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Anomalous Nernst effect in type-II Weyl semimetals
    Subhodip Saha
    Sumanta Tewari
    The European Physical Journal B, 2018, 91
  • [22] Predicted Unusual Magnetoresponse in Type-II Weyl Semimetals
    Yu, Zhi-Ming
    Yao, Yugui
    Yang, Shengyuan A.
    PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [23] Realizing type-II Weyl points in an optical lattice
    Shastri, Kunal
    Yang, Zhaoju
    Zhang, Baile
    PHYSICAL REVIEW B, 2017, 95 (01)
  • [24] Type-II Weyl cone transitions in driven semimetals
    Chan, Ching-Kit
    Oh, Yun-Tak
    Han, Jung Hoon
    Lee, Patrick A.
    PHYSICAL REVIEW B, 2016, 94 (12)
  • [25] Ideal type-II Weyl phonons in wurtzite CuI
    Liu, Jian
    Hou, Wenjie
    Wang, En
    Zhang, Shengjie
    Sun, Jia-Tao
    Meng, Sheng
    PHYSICAL REVIEW B, 2019, 100 (08)
  • [26] Observation of quadruple Weyl point in hybrid-Weyl phononic crystals
    Luo, Li
    Deng, Weiyin
    Yang, Yating
    Yan, Mou
    Lu, Jiuyang
    Huang, Xueqin
    Liu, Zhengyou
    PHYSICAL REVIEW B, 2022, 106 (13)
  • [27] Andreev reflection at the interface of a normal Weyl semimetal and a superconducting type-II Weyl semimetal
    Azizi, Alireza
    Abdollahipour, Babak
    PHYSICAL REVIEW B, 2020, 102 (02)
  • [28] Observation of Weyl Nodes in Robust Type-II Weyl Semimetal WP2
    Yao, M-Y
    Xu, N.
    Wu, Q. S.
    Autes, G.
    Kumar, N.
    Strocov, V. N.
    Plumb, N. C.
    Radovic, M.
    Yazyev, O., V
    Felser, C.
    Mesot, J.
    Shi, M.
    PHYSICAL REVIEW LETTERS, 2019, 122 (17)
  • [29] TaIrTe4: A ternary type-II Weyl semimetal
    Koepernik, K.
    Kasinathan, D.
    Efremov, D. V.
    Khim, Seunghyun
    Borisenko, Sergey
    Buechner, Bernd
    van den Brink, Jeroen
    PHYSICAL REVIEW B, 2016, 93 (20)
  • [30] Intrinsic anomalous Hall effect in type-II Weyl semimetals
    A. A. Zyuzin
    R. P. Tiwari
    JETP Letters, 2016, 103 : 717 - 722