DOMAIN GENERALIZATION IN FETAL BRAIN MRI SEGMENTATION WITH MULTI-RECONSTRUCTION AUGMENTATION

被引:0
|
作者
de Dumast, Priscille [1 ,2 ,3 ]
Cuadra, Meritxell Bach [1 ,2 ,3 ]
机构
[1] Lausanne Univ Hosp CHUV, Dept Radiol, Lausanne, Switzerland
[2] Univ Lausanne UNIL, Lausanne, Switzerland
[3] CIBM Ctr Biomed Imaging, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Magnetic resonance imaging (MRI); Super-resolution (SR) reconstruction; Automated fetal brain tissue segmentation; Data augmentation; Domain adaptation;
D O I
10.1109/ISBI53787.2023.10230402
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative analysis of in utero human brain development is crucial for abnormal characterization. Magnetic resonance image (MRI) segmentation is therefore an asset for quantitative analysis. However, the development of automated segmentation methods is hampered by the scarce availability of fetal brain MRI annotated datasets and the limited variability within these cohorts. In this context, we propose to leverage the power of fetal brain MRI super-resolution (SR) reconstruction methods to generate multiple reconstructions of a single subject with different parameters, thus as an efficient tuning-free data augmentation strategy. Overall, the latter significantly improves the generalization of segmentation methods over SR pipelines.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Reconstruction of fetal brain MRI with intensity matching and complete outlier removal
    Kuklisova-Murgasova, Maria
    Quaghebeur, Gerardine
    Rutherford, Mary A.
    Hajnal, Joseph V.
    Schnabel, Julia A.
    MEDICAL IMAGE ANALYSIS, 2012, 16 (08) : 1550 - 1564
  • [42] Investigation of Multi-Cohort Brain MRI Segmentation in Infants
    Fu, Pengfei
    Wang, Yaping
    Shen, Jinyuan
    Geng, Xiujuan
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [43] A massive multi-agent system for brain MRI segmentation
    Haroun, R
    Boumghar, F
    Hassas, S
    Hamami, L
    MASSIVELY MULTI-AGENT SYSTEMS I, 2005, 3446 : 174 - 186
  • [44] A Multi-Objective Framework for Brain MRI Threshold Segmentation
    Zhao, Wenting
    Wang, Lijin
    Shi, Yuxiao
    Xi, Xiaoming
    Yin, Yilong
    Tang, Yuchun
    2016 8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY IN MEDICINE AND EDUCATION (ITME), 2016, : 20 - 24
  • [45] Enhanced Deep Learning Framework for Automatic MRI Brain Tumor Segmentation with Data Augmentation
    Chamseddine, Ekram
    Tlig, Lotfi
    Sayadi, Mounir
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 409 - 413
  • [46] Consistent cortical reconstruction and multi-atlas brain segmentation
    Huo, Yuankai
    Plassard, Andrew J.
    Carass, Aaron
    Resnick, Susan M.
    Pham, Dzung L.
    Prince, Jerry L.
    Landman, Bennett A.
    NEUROIMAGE, 2016, 138 : 197 - 210
  • [47] A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
    Gholipour, Ali
    Rollins, Caitlin K.
    Velasco-Annis, Clemente
    Ouaalam, Abdelhakim
    Akhondi-Asl, Alireza
    Afacan, Onur
    Ortinau, Cynthia M.
    Clancy, Sean
    Limperopoulos, Catherine
    Yang, Edward
    Estroff, Judy A.
    Warfield, Simon K.
    SCIENTIFIC REPORTS, 2017, 7
  • [48] A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
    Ali Gholipour
    Caitlin K. Rollins
    Clemente Velasco-Annis
    Abdelhakim Ouaalam
    Alireza Akhondi-Asl
    Onur Afacan
    Cynthia M. Ortinau
    Sean Clancy
    Catherine Limperopoulos
    Edward Yang
    Judy A. Estroff
    Simon K. Warfield
    Scientific Reports, 7
  • [49] FEST: LEARNING SPATIO-TEMPORAL PRIORS FOR FETAL BRAIN MRI SEGMENTATION
    Penuela, Maria F.
    Vargas, Luisa
    Usma, Santiago
    Escobar, Maria
    Castillo, Angela
    Arbelaez, Pablo
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [50] CAS-Net: Conditional Atlas Generation and Brain Segmentation for Fetal MRI
    Li, Liu
    Sinclair, Matthew
    Makropoulos, Antonios
    Hajnal, Joseph V.
    Edwards, A. David
    Kainz, Bernhard
    Rueckert, Daniel
    Alansary, Amir
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND PERINATAL IMAGING, PLACENTAL AND PRETERM IMAGE ANALYSIS, 2021, 12959 : 221 - 230