DOMAIN GENERALIZATION IN FETAL BRAIN MRI SEGMENTATION WITH MULTI-RECONSTRUCTION AUGMENTATION

被引:0
|
作者
de Dumast, Priscille [1 ,2 ,3 ]
Cuadra, Meritxell Bach [1 ,2 ,3 ]
机构
[1] Lausanne Univ Hosp CHUV, Dept Radiol, Lausanne, Switzerland
[2] Univ Lausanne UNIL, Lausanne, Switzerland
[3] CIBM Ctr Biomed Imaging, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Magnetic resonance imaging (MRI); Super-resolution (SR) reconstruction; Automated fetal brain tissue segmentation; Data augmentation; Domain adaptation;
D O I
10.1109/ISBI53787.2023.10230402
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative analysis of in utero human brain development is crucial for abnormal characterization. Magnetic resonance image (MRI) segmentation is therefore an asset for quantitative analysis. However, the development of automated segmentation methods is hampered by the scarce availability of fetal brain MRI annotated datasets and the limited variability within these cohorts. In this context, we propose to leverage the power of fetal brain MRI super-resolution (SR) reconstruction methods to generate multiple reconstructions of a single subject with different parameters, thus as an efficient tuning-free data augmentation strategy. Overall, the latter significantly improves the generalization of segmentation methods over SR pipelines.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Rethinking Data Augmentation for Single-Source Domain Generalization in Medical Image Segmentation
    Su, Zixian
    Yao, Kai
    Yang, Xi
    Huang, Kaizhu
    Wang, Qiufeng
    Sun, Jie
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 2366 - 2374
  • [22] Improving domain generalization performance for medical image segmentation via random feature augmentation
    Kang, Yuxin
    Zhao, Xuan
    Zhang, Yu
    Li, Hansheng
    Wang, Guan
    Cui, Lei
    Xing, Yaqiong
    Feng, Jun
    Yang, Lin
    METHODS, 2023, 218 : 149 - 157
  • [23] Multi-Modality Reconstruction Attention and Difference Enhancement Network for Brain MRI Image Segmentation
    Zhang, Xiangfen
    Liu, Yan
    Zhang, Qingyi
    Yuan, Feiniu
    IEEE ACCESS, 2022, 10 : 31058 - 31069
  • [24] Assessing Data Quality on Fetal Brain MRI Reconstruction: A Multi-site and Multi-rater Study
    Sanchez, Thomas
    Mihailov, Angeline
    Gomez, Yvan
    Juan, Gerard Marti
    Eixarch, Elisenda
    Jakab, Andras
    Dunet, Vincent
    Koob, Meriam
    Auzias, Guillaume
    Cuadra, Meritxell Bach
    PERINATAL, PRETERM AND PAEDIATRIC IMAGE ANALYSIS, PIPPI 2024, 2025, 14747 : 46 - 56
  • [25] Data Augmentation by Adaptative Targeted Zoom for MRI Brain Tumor Segmentation
    Hernandez, Jose Armando
    COMPUTATIONAL NEUROSCIENCE, LAWCN 2023, 2024, 2108 : 14 - 24
  • [26] Fetal brain MRI: Segmentation and biometric analysis of the posterior fossa
    Claude, I
    Daire, JL
    Sebag, G
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (04) : 617 - 626
  • [27] Efficient segmentation of fetal brain MRI based on the physical resolution
    Xu, Yunzhi
    Li, Jiaxin
    Feng, Xue
    Qing, Kun
    Wu, Dan
    Zhao, Li
    MEDICAL PHYSICS, 2024, 51 (10) : 7214 - 7225
  • [28] Segmentation of the Cortical Plate in Fetal Brain MRI with a Topological Loss
    de Dumast, Priscille
    Kebiri, Hamza
    Atat, Chirine
    Dunet, Vincent
    Koob, Meriam
    Cuadra, Meritxell Bach
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND PERINATAL IMAGING, PLACENTAL AND PRETERM IMAGE ANALYSIS, 2021, 12959 : 200 - 209
  • [29] Efficient Multi-class Fetal Brain Segmentation in High Resolution MRI Reconstructions with Noisy Labels
    Payette, Kelly
    Kottke, Raimund
    Jakab, Andras
    MEDICAL ULTRASOUND, AND PRETERM, PERINATAL AND PAEDIATRIC IMAGE ANALYSIS, ASMUS 2020, PIPPI 2020, 2020, 12437 : 295 - 304
  • [30] Fetal Head Localization and Fetal Brain Segmentation from MRI using the Center of Gravity
    Somasundaram, K.
    Gayathri, S. P.
    Shankar, R. Siva
    Rajeswaran, R.
    2016 20TH INTERNATIONAL COMPUTER SCIENCE AND ENGINEERING CONFERENCE (ICSEC), 2016,