DOMAIN GENERALIZATION IN FETAL BRAIN MRI SEGMENTATION WITH MULTI-RECONSTRUCTION AUGMENTATION

被引:0
|
作者
de Dumast, Priscille [1 ,2 ,3 ]
Cuadra, Meritxell Bach [1 ,2 ,3 ]
机构
[1] Lausanne Univ Hosp CHUV, Dept Radiol, Lausanne, Switzerland
[2] Univ Lausanne UNIL, Lausanne, Switzerland
[3] CIBM Ctr Biomed Imaging, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Magnetic resonance imaging (MRI); Super-resolution (SR) reconstruction; Automated fetal brain tissue segmentation; Data augmentation; Domain adaptation;
D O I
10.1109/ISBI53787.2023.10230402
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative analysis of in utero human brain development is crucial for abnormal characterization. Magnetic resonance image (MRI) segmentation is therefore an asset for quantitative analysis. However, the development of automated segmentation methods is hampered by the scarce availability of fetal brain MRI annotated datasets and the limited variability within these cohorts. In this context, we propose to leverage the power of fetal brain MRI super-resolution (SR) reconstruction methods to generate multiple reconstructions of a single subject with different parameters, thus as an efficient tuning-free data augmentation strategy. Overall, the latter significantly improves the generalization of segmentation methods over SR pipelines.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Efficient Total Variation Algorithm for Fetal Brain MRI Reconstruction
    Tourbier, Sebastien
    Bresson, Xavier
    Hagmann, Patric
    Thiran, Jean-Philippe
    Meuli, Reto
    Cuadra, Meritxell Bach
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT II, 2014, 8674 : 252 - 259
  • [32] A multi-agent system for MRI brain segmentation
    Germond, L
    Dojat, M
    Taylor, C
    Garbay, C
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 1999, 1620 : 423 - 432
  • [33] Harmonised Segmentation of Neonatal Brain MRI: A Domain Adaptation Approach
    Grigorescu, Irina
    Cordero-Grande, Lucilio
    Batalle, Dafnis
    Edwards, A. David
    Hajnal, Joseph V.
    Modat, Marc
    Deprez, Maria
    MEDICAL ULTRASOUND, AND PRETERM, PERINATAL AND PAEDIATRIC IMAGE ANALYSIS, ASMUS 2020, PIPPI 2020, 2020, 12437 : 253 - 263
  • [34] Gradient-Map-Guided Adaptive Domain Generalization for Cross Modality MRI Segmentation
    Li, Bingnan
    Gao, Zhitong
    He, Xuming
    MACHINE LEARNING FOR HEALTH, ML4H, VOL 225, 2023, 225 : 292 - 306
  • [35] DBSegment: Fast and robust segmentation of deep brain structures considering domain generalization
    Baniasadi, Mehri
    Petersen, Mikkel, V
    Goncalves, Jorge
    Horn, Andreas
    Vlasov, Vanja
    Hertel, Frank
    Husch, Andreas
    HUMAN BRAIN MAPPING, 2023, 44 (02) : 762 - 778
  • [36] Synthetic MRI in action: A novel framework in data augmentation strategies for robust multi-modal brain tumor segmentation
    Pani, Kaliprasad
    Chawla, Indu
    Computers in Biology and Medicine, 2024, 183
  • [37] Learning to atlas register for rapid segmentation of brain structures in fetal MRI
    Kulkarni, Tanvi
    Aqil, K. H.
    Jayakumar, Jaikishan
    Ram, Keerthi
    Sivaprakasam, Mohanasankar
    MEDICAL IMAGING 2023, 2023, 12464
  • [38] Style Data Augmentation for Robust Segmentation of Multi-modality Cardiac MRI
    Ly, Buntheng
    Cochet, Hubert
    Sermesant, Maxime
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES, 2020, 12009 : 197 - 208
  • [39] Automated template-based brain localization and extraction for fetal brain MRI reconstruction
    Tourbier, Sebastien
    Velasco-Annis, Clemente
    Taimouri, Vahid
    Hagmann, Patric
    Meuli, Reto
    Warfield, Simon K.
    Cuadra, Meritxell Bach
    Gholipour, Ali
    NEUROIMAGE, 2017, 155 : 460 - 472
  • [40] Domain and Content Adaptive Convolution Based Multi-Source Domain Generalization for Medical Image Segmentation
    Hu, Shishuai
    Liao, Zehui
    Zhang, Jianpeng
    Xia, Yong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (01) : 233 - 244