Validation of an AI-based algorithm for measurement of the thoracic aortic diameter in low-dose chest CT

被引:3
|
作者
Hamelink, I. Iris [1 ]
de Heide, E. Erik Jan [1 ]
Pelgrim, G. J. Gert Jan [1 ]
Kwee, T. C. Thomas [1 ]
van Ooijen, P. M. A. Peter [2 ,3 ]
de Bock, G. H. Truuske [4 ]
Vliegenthart, R. Rozemarijn [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Radiol, NL- 9713 GZ Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Radiat Oncol, NL-9713 GZ Groningen, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen, Data Sci Hlth DASH, NL-9713 GZ Groningen, Netherlands
[4] Univ Groningen, Univ Med Ctr Groningen, Dept Epidemiol, NL-9713 GZ Groningen, Netherlands
关键词
Thoracic aortic aneurysm; Chest CT; Artificial intelligence; ANGIOGRAPHY;
D O I
10.1016/j.ejrad.2023.111067
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: To evaluate the performance of artificial intelligence (AI) software for automatic thoracic aortic diameter assessment in a heterogeneous cohort with low-dose, non-contrast chest computed tomography (CT). Materials and methods: Participants of the Imaging in Lifelines (ImaLife) study who underwent low-dose, non-contrast chest CT (August 2017-May 2022) were included using random samples of 80 participants <50y, >= 80y, and with thoracic aortic diameter >= 40 mm. AI-based aortic diameters at eight guideline compliant positions were compared with manual measurements. In 90 examinations (30 per group) diameters were reassessed for intra- and inter-reader variability, which was compared to discrepancy of the AI system using Bland-Altman analysis, paired samples t-testing and linear mixed models. Results: We analyzed 240 participants (63 +/- 16 years; 50 % men). AI evaluation failed in 11 cases due to incorrect segmentation (4.6 %), leaving 229 cases for analysis. No difference was found in aortic diameter between manual and automatic measurements (32.7 +/- 6.4 mm vs 32.7 +/- 6.0 mm, p = 0.70). Bland-Altman analysis yielded no systematic bias and a repeatability coefficient of 4.0 mm for AI. Mean discrepancy of AI (1.3 +/- 1.6 mm) was comparable to inter-reader variability (1.4 +/- 1.4 mm); only at the proximal aortic arch showed AI higher discrepancy (2.0 +/- 1.8 mm vs 0.9 +/- 0.9 mm, p < 0.001). No difference between AI discrepancy and inter-reader variability was found for any subgroup (all: p > 0.05). Conclusion: The AI software can accurately measure thoracic aortic diameters, with discrepancy to a human reader similar to inter-reader variability in a range from normal to dilated aortas.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Low-dose spiral CT:: applicability to paediatric chest imaging
    Rogalla, P
    Stöver, B
    Scheer, I
    Juran, R
    Gaedicke, G
    Hamm, B
    PEDIATRIC RADIOLOGY, 1999, 29 (08) : 565 - 569
  • [32] Automated aorta segmentation in low-dose chest CT images
    Yiting Xie
    Jennifer Padgett
    Alberto M. Biancardi
    Anthony P. Reeves
    International Journal of Computer Assisted Radiology and Surgery, 2014, 9 : 211 - 219
  • [33] Low-Dose Chest CT for the Diagnosis of COVID-19
    Schulze-Hagen, Maximilian
    Huebel, Christian
    Meier-Schroers, Michael
    Yueksel, Can
    Sander, Anton
    Saehn, Marwin
    Kleines, Michael
    Isfort, Peter
    Cornelissen, Christian
    Lemmen, Sebastian
    Marx, Nikolaus
    Dreher, Michael
    Brokmann, Joerg
    Kopp, Andreas
    Kuhl, Christiane
    DEUTSCHES ARZTEBLATT INTERNATIONAL, 2020, 117 (22-23): : 389 - +
  • [34] Biological Effects of Low-Dose Chest CT on Chromosomal DNA
    Sakane, Hiroaki
    Ishida, Mari
    Shi, Lin
    Fukumoto, Wataru
    Sakai, Chiemi
    Miyata, Yoshihiro
    Ishida, Takafumi
    Akita, Tomoyuki
    Okada, Morihito
    Awai, Kazuo
    Tashiro, Satoshi
    RADIOLOGY, 2020, 295 (02) : 439 - 445
  • [35] Low-dose spiral CT: applicability to paediatric chest imaging
    P. Rogalla
    Brigitte Stöver
    Ianina Scheer
    Ralf Juran
    Gerhard Gaedicke
    Bernd Hamm
    Pediatric Radiology, 1999, 29 : 565 - 569
  • [36] Automated aorta segmentation in low-dose chest CT images
    Xie, Yiting
    Padgett, Jennifer
    Biancardi, Alberto M.
    Reeves, Anthony P.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2014, 9 (02) : 211 - 219
  • [37] EKG-gated Low-dose Chest CT Imaging
    Hsieh, Jiang
    Londt, John
    Dutta, Sandeep
    Okerlund, Darin
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 1666 - 1669
  • [38] Local noise estimation in low-dose chest CT images
    Padgett, J.
    Biancardi, A. M.
    Henschke, C. I.
    Yankelevitz, D.
    Reeves, A. P.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2014, 9 (02) : 221 - 229
  • [39] Accuracy of low-dose chest CT in intensive care patients
    Börjesson J.
    Latifi A.
    Friman O.
    Beckman M.O.
    Oldner A.
    Labruto F.
    Emergency Radiology, 2011, 18 (1) : 17 - 21
  • [40] Local noise estimation in low-dose chest CT images
    J. Padgett
    A. M. Biancardi
    C. I. Henschke
    D. Yankelevitz
    A. P. Reeves
    International Journal of Computer Assisted Radiology and Surgery, 2014, 9 : 221 - 229