Validation of an AI-based algorithm for measurement of the thoracic aortic diameter in low-dose chest CT

被引:3
|
作者
Hamelink, I. Iris [1 ]
de Heide, E. Erik Jan [1 ]
Pelgrim, G. J. Gert Jan [1 ]
Kwee, T. C. Thomas [1 ]
van Ooijen, P. M. A. Peter [2 ,3 ]
de Bock, G. H. Truuske [4 ]
Vliegenthart, R. Rozemarijn [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Radiol, NL- 9713 GZ Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Radiat Oncol, NL-9713 GZ Groningen, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen, Data Sci Hlth DASH, NL-9713 GZ Groningen, Netherlands
[4] Univ Groningen, Univ Med Ctr Groningen, Dept Epidemiol, NL-9713 GZ Groningen, Netherlands
关键词
Thoracic aortic aneurysm; Chest CT; Artificial intelligence; ANGIOGRAPHY;
D O I
10.1016/j.ejrad.2023.111067
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: To evaluate the performance of artificial intelligence (AI) software for automatic thoracic aortic diameter assessment in a heterogeneous cohort with low-dose, non-contrast chest computed tomography (CT). Materials and methods: Participants of the Imaging in Lifelines (ImaLife) study who underwent low-dose, non-contrast chest CT (August 2017-May 2022) were included using random samples of 80 participants <50y, >= 80y, and with thoracic aortic diameter >= 40 mm. AI-based aortic diameters at eight guideline compliant positions were compared with manual measurements. In 90 examinations (30 per group) diameters were reassessed for intra- and inter-reader variability, which was compared to discrepancy of the AI system using Bland-Altman analysis, paired samples t-testing and linear mixed models. Results: We analyzed 240 participants (63 +/- 16 years; 50 % men). AI evaluation failed in 11 cases due to incorrect segmentation (4.6 %), leaving 229 cases for analysis. No difference was found in aortic diameter between manual and automatic measurements (32.7 +/- 6.4 mm vs 32.7 +/- 6.0 mm, p = 0.70). Bland-Altman analysis yielded no systematic bias and a repeatability coefficient of 4.0 mm for AI. Mean discrepancy of AI (1.3 +/- 1.6 mm) was comparable to inter-reader variability (1.4 +/- 1.4 mm); only at the proximal aortic arch showed AI higher discrepancy (2.0 +/- 1.8 mm vs 0.9 +/- 0.9 mm, p < 0.001). No difference between AI discrepancy and inter-reader variability was found for any subgroup (all: p > 0.05). Conclusion: The AI software can accurately measure thoracic aortic diameters, with discrepancy to a human reader similar to inter-reader variability in a range from normal to dilated aortas.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Ultra low-dose helical CT of the chest
    Nitta, N
    Takahashi, M
    Murata, K
    Morita, R
    AMERICAN JOURNAL OF ROENTGENOLOGY, 1998, 171 (02) : 383 - 385
  • [12] Accurate Measurement of Small Airways on Low-Dose Thoracic CT Scans in Smokers
    Lutey, Barbara A.
    Conradi, Susan H.
    Atkinson, Jeffrey J.
    Zheng, Jie
    Schechtman, Kenneth B.
    Senior, Robert M.
    Gierada, David S.
    CHEST, 2013, 143 (05) : 1321 - 1329
  • [13] Calcification of the thoracic aorta on low-dose chest CT predicts severe COVID-19
    Fervers, Philipp
    Kottlors, Jonathan
    Zopfs, David
    Bremm, Johannes
    Maintz, David
    Safarov, Orkhan
    Tritt, Stephanie
    Abdullayev, Nuran
    Persigehl, Thorsten
    PLOS ONE, 2020, 15 (12):
  • [14] An AI-Based Algorithm for the Automatic Classification of Thoracic Radiographs in Cats
    Banzato, Tommaso
    Wodzinski, Marek
    Tauceri, Federico
    Dona, Chiara
    Scavazza, Filippo
    Mueller, Henning
    Zotti, Alessandro
    FRONTIERS IN VETERINARY SCIENCE, 2021, 8
  • [15] CLINICAL-APPLICATIONS OF LOW-DOSE CHEST CT
    BERKMAN, YM
    ROMNEY, BM
    AUSTIN, JH
    RADIOLOGY, 1992, 185 : 266 - 267
  • [16] Low-dose chest CT and the impact on nodule visibility
    Tugwell-Allsup, J.
    Owen, B. W.
    England, A.
    RADIOGRAPHY, 2021, 27 (01) : 24 - 30
  • [17] Diagnostic validation of a deep learning nodule detection algorithm in low-dose chest CT: determination of optimized dose thresholds in a virtual screening scenario
    Alan A. Peters
    Adrian T. Huber
    Verena C. Obmann
    Johannes T. Heverhagen
    Andreas Christe
    Lukas Ebner
    European Radiology, 2022, 32 : 4324 - 4332
  • [18] Diagnostic validation of a deep learning nodule detection algorithm in low-dose chest CT: determination of optimized dose thresholds in a virtual screening scenario
    Peters, Alan A.
    Huber, Adrian T.
    Obmann, Verena C.
    Heverhagen, Johannes T.
    Christe, Andreas
    Ebner, Lukas
    EUROPEAN RADIOLOGY, 2022, 32 (06) : 4324 - 4332
  • [19] Volumetric measurement of pulmonary nodules at low-dose chest CT: effect of reconstruction setting on measurement variability
    Ying Wang
    Geertruida H. de Bock
    Rob J. van Klaveren
    Peter van Ooyen
    Wim Tukker
    Yingru Zhao
    Monique D. Dorrius
    Rozemarijn Vliegenthart Proença
    Wendy J. Post
    Matthijs Oudkerk
    European Radiology, 2010, 20 : 1180 - 1187
  • [20] Volumetric measurement of pulmonary nodules at low-dose chest CT: effect of reconstruction setting on measurement variability
    Wang, Ying
    de Bock, Geertruida H.
    van Klaveren, Rob J.
    van Ooyen, Peter
    Tukker, Wim
    Zhao, Yingru
    Dorrius, Monique D.
    Proenca, Rozemarijn Vliegenthart
    Post, Wendy J.
    Oudkerk, Matthijs
    EUROPEAN RADIOLOGY, 2010, 20 (05) : 1180 - 1187