The Neumann problem for a class of generalized Kirchhoff-type potential systems

被引:6
|
作者
Chems Eddine, Nabil [1 ]
Repovs, Dusan D. [2 ,3 ,4 ]
机构
[1] Mohammed V Univ, Fac Sci, Dept Math, Lab Math Anal & Applicat, POB 1014, Rabat, Morocco
[2] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
Kirchhoff-type problems; Neumann boundary conditions; p(x )-Laplacian operator; Generalized capillary operator; Sobolev spaces with variable exponent; Critical Sobolev exponents; Concentration-compactness principle; Critical point theory; Truncation technique; MULTIPLE SOLUTIONS; VARIABLE EXPONENT; P(X)-LAPLACIAN EQUATIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; SPACES; EXISTENCE; GROWTH;
D O I
10.1186/s13661-023-01705-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the Neumann problem for a class of quasilinear stationary Kirchhoff-type potential systems, which involves general variable exponents elliptic operators with critical growth and real positive parameter. We show that the problem has at least one solution, which converges to zero in the norm of the space as the real positive parameter tends to infinity, via combining the truncation technique, variational method, and the concentration-compactness principle for variable exponent under suitable assumptions on the nonlinearities.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] ON A DOUBLE PHASE PROBLEM OF KIRCHHOFF-TYPE WITH VARIABLE EXPONENT
    Zuo, Jiabin
    Massar, Mohammed
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [42] Parameter Identification Problem for the Kirchhoff-Type Equation with Viscosity
    Hwang, Jinsoo
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [43] EXISTENCE AND CONCENTRATION RESULTS FOR KIRCHHOFF-TYPE SCHRODINGER SYSTEMS WITH STEEP POTENTIAL WELL
    Lu, Dengfeng
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 661 - 677
  • [44] Existence and concentration of solutions for a Kirchhoff-type problem with sublinear perturbation and steep potential well
    He, Shuwen
    Wen, Xiaobo
    AIMS MATHEMATICS, 2023, 8 (03): : 6432 - 6446
  • [45] EIGENVALUE PROBLEMS FOR p(x)-KIRCHHOFF-TYPE EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS
    Taarabti, Said
    El Allali, Zakaria
    Ben Haddouch, Khalil
    Moutaouekkil, Loubna
    MATHEMATICAL REPORTS, 2021, 23 (1-2): : 233 - 248
  • [46] On an Elliptic System of p(x)-Kirchhoff-Type under Neumann Boundary Condition
    Yucedag, Zehra
    Avci, Mustafa
    Mashiyev, Rabil
    MATHEMATICAL MODELLING AND ANALYSIS, 2012, 17 (02) : 161 - 170
  • [47] Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions
    Heidarkhani, Shapour
    De Araujo, Anderson L. A.
    Afrouzi, Ghasem A.
    Moradi, Shahin
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (2-3) : 326 - 342
  • [48] Multiple Solutions For A Class Of p(x)-Kirchhoff-Type Equations
    Heidarkhani, Shapour
    Ghobadi, Ahmad
    Avci, Mustafa
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 160 - 168
  • [49] Multiple solutions for a class of Kirchhoff-type equation with critical growth
    Ye, Yiwei
    Liu, Shan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2025, (07) : 1 - 25
  • [50] Semiclassical ground states for a class of nonlinear Kirchhoff-type problems
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    APPLICABLE ANALYSIS, 2017, 96 (13) : 2267 - 2284