The Neumann problem for a class of generalized Kirchhoff-type potential systems

被引:6
|
作者
Chems Eddine, Nabil [1 ]
Repovs, Dusan D. [2 ,3 ,4 ]
机构
[1] Mohammed V Univ, Fac Sci, Dept Math, Lab Math Anal & Applicat, POB 1014, Rabat, Morocco
[2] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
Kirchhoff-type problems; Neumann boundary conditions; p(x )-Laplacian operator; Generalized capillary operator; Sobolev spaces with variable exponent; Critical Sobolev exponents; Concentration-compactness principle; Critical point theory; Truncation technique; MULTIPLE SOLUTIONS; VARIABLE EXPONENT; P(X)-LAPLACIAN EQUATIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; SPACES; EXISTENCE; GROWTH;
D O I
10.1186/s13661-023-01705-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the Neumann problem for a class of quasilinear stationary Kirchhoff-type potential systems, which involves general variable exponents elliptic operators with critical growth and real positive parameter. We show that the problem has at least one solution, which converges to zero in the norm of the space as the real positive parameter tends to infinity, via combining the truncation technique, variational method, and the concentration-compactness principle for variable exponent under suitable assumptions on the nonlinearities.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] The critical Neumann problem of Kirchhoff type
    Zhang, Jian
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 519 - 530
  • [22] Fucik spectrum for the Kirchhoff-type problem and applications
    Li, Fuyi
    Rong, Ting
    Liang, Zhanping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 182 : 280 - 302
  • [23] EXISTENCE RESULTS FOR A KIRCHHOFF-TYPE PROBLEM WITH SINGULARITY
    Khodabakhshi, M.
    Vaezpour, S. M.
    Tavani, M. R. Heidari
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 351 - 362
  • [24] AN OPTIMAL CONTROL PROBLEM FOR A KIRCHHOFF-TYPE EQUATION
    Delgado, M.
    Figueiredo, G. M.
    Gayte, I.
    Morales-Rodrigo, C.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (03) : 773 - 790
  • [25] TRIPLE WEAK SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM
    Tavani, Mohammad reza heidari
    Nazari, Abdollah
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2024, 178 (03) : 503 - 514
  • [26] THREE SOLUTIONS FOR A NEW KIRCHHOFF-TYPE PROBLEM
    Wang, Yue
    Wei, Qi-Ping
    Suo, Hong-Min
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (01):
  • [27] CRITICAL KIRCHHOFF-TYPE EQUATION WITH SINGULAR POTENTIAL
    Su, Yu
    Liu, Senli
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 611 - 636
  • [28] THREE SOLUTIONS FOR A CLASS OF GRADIENT KIRCHHOFF-TYPE SYSTEMS DEPENDING ON TWO PARAMETERS
    Heidarkhani, Shapour
    Tian, Yu
    DYNAMIC SYSTEMS AND APPLICATIONS, 2011, 20 (04): : 551 - 562
  • [29] Perturbed Kirchhoff-type Neumann problems in Orlicz-Sobolev spaces
    Heidarkhani, Shapour
    Caristi, Giuseppe
    Ferrara, Massimiliano
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 2008 - 2019
  • [30] Existence and Multiplicity Results for a Class of Kirchhoff-Type Equations
    Tavani, Mohammad Reza Heidari
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 441 - 459