The Neumann problem for a class of generalized Kirchhoff-type potential systems

被引:6
|
作者
Chems Eddine, Nabil [1 ]
Repovs, Dusan D. [2 ,3 ,4 ]
机构
[1] Mohammed V Univ, Fac Sci, Dept Math, Lab Math Anal & Applicat, POB 1014, Rabat, Morocco
[2] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
Kirchhoff-type problems; Neumann boundary conditions; p(x )-Laplacian operator; Generalized capillary operator; Sobolev spaces with variable exponent; Critical Sobolev exponents; Concentration-compactness principle; Critical point theory; Truncation technique; MULTIPLE SOLUTIONS; VARIABLE EXPONENT; P(X)-LAPLACIAN EQUATIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; SPACES; EXISTENCE; GROWTH;
D O I
10.1186/s13661-023-01705-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the Neumann problem for a class of quasilinear stationary Kirchhoff-type potential systems, which involves general variable exponents elliptic operators with critical growth and real positive parameter. We show that the problem has at least one solution, which converges to zero in the norm of the space as the real positive parameter tends to infinity, via combining the truncation technique, variational method, and the concentration-compactness principle for variable exponent under suitable assumptions on the nonlinearities.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Sign-changing solutions for a class of fractional Kirchhoff-type problem with logarithmic nonlinearity
    Yang, Qing
    Bai, Chuanzhi
    AIMS MATHEMATICS, 2021, 6 (01): : 868 - 881
  • [32] ON A CLASS OF p(x,<middle dot>)-INTEGRODIFFERENTIAL KIRCHHOFF-TYPE PROBLEM WITH SINGULAR KERNEL
    Agarwal, R. P.
    Azroul, E.
    Kamali, N.
    Shimi, M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (01): : 333 - 353
  • [33] Existence and uniqueness results for a class of p(x)-Kirchhoff-type problems with convection term and Neumann boundary data
    Allalou, Chakir
    El Ouaarabi, Mohamed
    Melliani, Said
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (01) : 617 - 633
  • [34] A Class of Kirchhoff-Type Problems Involving the Concave–Convex Nonlinearities and Steep Potential Well
    Tao Zhong
    Xianjiu Huang
    Jianhua Chen
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 3469 - 3498
  • [35] On an elliptic Kirchhoff-type problem depending on two parameters
    Biagio Ricceri
    Journal of Global Optimization, 2010, 46 : 543 - 549
  • [36] On an Open Question of Ricceri Concerning a Kirchhoff-Type Problem
    Faraci, Francesca
    Farkas, Csaba
    MINIMAX THEORY AND ITS APPLICATIONS, 2019, 4 (02): : 271 - 280
  • [37] Multi-bump solutions for a Kirchhoff-type problem
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (01) : 1 - 26
  • [38] On an elliptic Kirchhoff-type problem depending on two parameters
    Ricceri, Biagio
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (04) : 543 - 549
  • [39] Existence and uniqueness results for a class of p(x)-Kirchhoff-type problems with convection term and Neumann boundary data
    Chakir Allalou
    Mohamed El Ouaarabi
    Said Melliani
    Journal of Elliptic and Parabolic Equations, 2022, 8 : 617 - 633
  • [40] The third solution for a Kirchhoff-type problem with a critical exponent
    Wang, Yue
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)