Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application

被引:7
|
作者
Aziz, Dara M. [1 ]
Abdulwahid, Rebar T. [2 ,3 ]
Hassan, Sangar A. [1 ]
Aziz, Shujahadeen B. [4 ,5 ]
Singh, Pramod K. [6 ]
Al-Asbahi, Bandar A. [7 ]
Ahmed, Abdullah A. A. [8 ,9 ]
Woo, H. J. [13 ]
Kadir, M. F. Z. [10 ,11 ]
Karim, Wrya O. [12 ]
机构
[1] Univ Raparin, Coll Sci, Dept Chem, Kurdistan Reg Govt, Main St, Ranyah 46012, Iraq
[2] Cihan Univ Sulaimaniya, Coll Hlth Sci, Med Lab Anal Dept, Sulaimaniya 46001, Kurdistan, Iraq
[3] Univ Sulaimani, Coll Educ, Kurdistan Reg Govt, Dept Phys, Old Campus, Sulaymaniyah 46001, Iraq
[4] Kurdistan Reg Govt, Univ Sulaimani, Res & Dev Ctr, Hameed Majid Adv Polymer Mat Res Lab, Sulaymaniyah 46001, Iraq
[5] Charmo Univ, Coll Sci, Dept Phys, Chamchamal 46023, Iraq
[6] Sharda Univ, Ctr Solar Cells & Renewable Energy, Dept Phys, Greater Noida 201310, India
[7] King Saud Univ, Coll Sci, Dept Phys & Astron, PO BOX 2455, Riyadh 11451, Saudi Arabia
[8] Univ Hamburg, Ctr Hybrid Nanostruct CHyN, Hamburg, Germany
[9] Univ Hamburg, Fachbereich Phys, D-20146 Hamburg, Germany
[10] Univ Malaya, Univ Malaya Ctr Ion Liquids UMCiL, Kuala Lumpur 50603, Malaysia
[11] Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur 50603, Malaysia
[12] Univ Sulaimani, Coll Sci, Dept Chem, Kurdistan Reg Govt, Qlyasan St, Sulaimani 46001, Iraq
[13] Univ Malaya, Ctr Ion Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur, Malaysia
关键词
Biopolymers; Plasticizer; Supercapacitor; Lithium perchlorate; Conductivity study; Ion transport parameters; SOLID POLYMER ELECTROLYTE; TRANSPORT-PROPERTIES; IMPEDANCE SPECTROSCOPY; ELECTRICAL-PROPERTIES; ETHYLENE CARBONATE; BLEND; STARCH; LIQUID; PERFORMANCE; GLYCEROL;
D O I
10.1007/s10924-024-03198-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates Li+ ion-conducting biopolymer blend electrolytes-based on chitosan (CS) and potato starch (PS) with glycerol plasticization. The advanced techniques including FTIR, impedance, TNM, LSV, and CV were employed to characterize the compositional and electrochemical properties of the solid films. The FTIR analysis indicates significant influence of glycerol on polymer/salt interactions, evidenced by the shift of FTIR bands to lower wavenumbers, signifying an increase in free ions within the host polymer system. Impedance results indicate that plasticizer addition reduces the bulk resistance to an optimum value of 49 ohm. The calculated DC values demonstrate the suitability of the electrolyte for use in energy storage applications (ESAs) with the highest ionic conductivity of 2.01 x 10-4 S cm-1. The high values of both epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} and epsilon ''\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }{\prime }}$$\end{document} at lower frequencies are due to interfacial polarization and the accumulation of charges, respectively. The sample with the largest plasticizer content has shown the highest epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} of 112.4 at 105 Hz. The shifting of tan delta peaks to the higher frequency side with the increase of plasticizer indicates an increase in the mobility of cations. The combination of tan delta plot and Argand plot was used to explore the dominant mechanism in ion conduction. The electrochemical studies were performed to detect the ability of the films to be used for EDLC applications. The TNM (tion=0.947) and LSV (decomposition voltage = 3.1 V) values favor the films for ESAs. The pattern of CV curves at various scan rates established the successful design of the EDLC device. The calculated capacitance from the area under CV curves is sufficiently high. The capacitance was influenced by scan rates and changed from 12.92 to 38.68 F/g.
引用
收藏
页码:3845 / 3868
页数:24
相关论文
共 50 条
  • [41] Carboxymethyl cellulose membranes blended with carbon nanotubes/Ag nanoparticles for eco-friendly safer lithium-ion batteries
    Tohamy, Hebat-Allah S.
    El-Sakhawy, Mohamed
    Elnasharty, Mohamed M. M.
    DIAMOND AND RELATED MATERIALS, 2023, 138
  • [42] Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries
    Song, Qingquan
    Li, Aijun
    Shi, Lei
    Qian, Cheng
    Feric, Tony Gordon
    Fu, Yanke
    Zhang, Hanrui
    Li, Zeyuan
    Wang, Peiyu
    Li, Zheng
    Zhai, Haowei
    Wang, Xue
    Dontigny, Martin
    Zaghib, Karim
    Park, Ah-Hyung
    Myers, Kristin
    Chuan, Xiuyun
    Yang, Yuan
    ENERGY STORAGE MATERIALS, 2019, 22 : 48 - 56
  • [43] Eco-Friendly Water-Processable Polyimide Binders with High Adhesion to Silicon Anodes for Lithium-Ion Batteries
    So, Yujin
    Bae, Hyeon-Su
    Kang, Yi Young
    Chung, Ji Yun
    Park, No Kyun
    Kim, Jinsoo
    Jung, Hee-Tae
    Won, Jong Chan
    Ryou, Myung-Hyun
    Kim, Yun Ho
    NANOMATERIALS, 2021, 11 (12)
  • [44] Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries
    Boriboon, Dul
    Vongsetskul, Thammasit
    Limthongkul, Pimpa
    Kobsiriphat, Worawarit
    Tammawat, Phontip
    CARBOHYDRATE POLYMERS, 2018, 189 : 145 - 151
  • [45] Effect of pyrolysis pretreatment combined with micro-nanobubbles on the eco-friendly recycling of spent lithium-ion batteries
    Li, Jinlong
    Su, Pengxin
    Li, Jiahao
    Liu, Yanqing
    Wang, Jie
    Khoshdast, Hamid
    He, Yaqun
    Nazari, Sabereh
    JOURNAL OF POWER SOURCES, 2024, 611
  • [46] Eco-friendly production of high quality low cost graphene and its application in lithium ion batteries
    Kamali, Ali Reza
    GREEN CHEMISTRY, 2016, 18 (07) : 1952 - 1964
  • [47] Electrochemical properties and lithium-ion storage mechanism of LiCuVO4 as an intercalation anode material for lithium-ion batteries
    Li, Malin
    Yang, Xu
    Wang, Chunzhong
    Chen, Nan
    Hu, Fang
    Bie, Xiaofei
    Wei, Yingjin
    Du, Fei
    Chen, Gang
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (02) : 586 - 592
  • [48] An eco-friendly and flame-retardant bio-based fibers separator with fast lithium-ion transport towards high-safety lithium-ion batteries
    Wang, Linfeng
    Wang, Yanru
    Yang, Ju
    Quan, Fengyu
    Wang, Bingbing
    Shao, Lupeng
    Tan, Liwen
    Tian, Xing
    Xia, Yanzhi
    JOURNAL OF POWER SOURCES, 2024, 613
  • [49] Enhanced activated carbon lithium-ion capacitor electrochemical stability through electrolyte dielectric optimisation
    Eleri, Obinna Egwu
    Pires, Julie
    Huld, Frederik Thorbjorn
    Lu, Song
    Schweigart, Philipp
    Svensson, Ann Mari
    Lou, Fengliu
    Yu, Zhixin
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (08): : 1846 - 1854
  • [50] Energy storage mechanisms of metal selenides and application in lithium-ion capacitors
    Wei, Wenpin
    Liang, Chu
    Sun, Xianzhong
    Wang, Kai
    Zhang, Xiong
    Ma, Yanwei
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (06): : 42 - 50