Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application

被引:7
|
作者
Aziz, Dara M. [1 ]
Abdulwahid, Rebar T. [2 ,3 ]
Hassan, Sangar A. [1 ]
Aziz, Shujahadeen B. [4 ,5 ]
Singh, Pramod K. [6 ]
Al-Asbahi, Bandar A. [7 ]
Ahmed, Abdullah A. A. [8 ,9 ]
Woo, H. J. [13 ]
Kadir, M. F. Z. [10 ,11 ]
Karim, Wrya O. [12 ]
机构
[1] Univ Raparin, Coll Sci, Dept Chem, Kurdistan Reg Govt, Main St, Ranyah 46012, Iraq
[2] Cihan Univ Sulaimaniya, Coll Hlth Sci, Med Lab Anal Dept, Sulaimaniya 46001, Kurdistan, Iraq
[3] Univ Sulaimani, Coll Educ, Kurdistan Reg Govt, Dept Phys, Old Campus, Sulaymaniyah 46001, Iraq
[4] Kurdistan Reg Govt, Univ Sulaimani, Res & Dev Ctr, Hameed Majid Adv Polymer Mat Res Lab, Sulaymaniyah 46001, Iraq
[5] Charmo Univ, Coll Sci, Dept Phys, Chamchamal 46023, Iraq
[6] Sharda Univ, Ctr Solar Cells & Renewable Energy, Dept Phys, Greater Noida 201310, India
[7] King Saud Univ, Coll Sci, Dept Phys & Astron, PO BOX 2455, Riyadh 11451, Saudi Arabia
[8] Univ Hamburg, Ctr Hybrid Nanostruct CHyN, Hamburg, Germany
[9] Univ Hamburg, Fachbereich Phys, D-20146 Hamburg, Germany
[10] Univ Malaya, Univ Malaya Ctr Ion Liquids UMCiL, Kuala Lumpur 50603, Malaysia
[11] Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur 50603, Malaysia
[12] Univ Sulaimani, Coll Sci, Dept Chem, Kurdistan Reg Govt, Qlyasan St, Sulaimani 46001, Iraq
[13] Univ Malaya, Ctr Ion Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur, Malaysia
关键词
Biopolymers; Plasticizer; Supercapacitor; Lithium perchlorate; Conductivity study; Ion transport parameters; SOLID POLYMER ELECTROLYTE; TRANSPORT-PROPERTIES; IMPEDANCE SPECTROSCOPY; ELECTRICAL-PROPERTIES; ETHYLENE CARBONATE; BLEND; STARCH; LIQUID; PERFORMANCE; GLYCEROL;
D O I
10.1007/s10924-024-03198-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates Li+ ion-conducting biopolymer blend electrolytes-based on chitosan (CS) and potato starch (PS) with glycerol plasticization. The advanced techniques including FTIR, impedance, TNM, LSV, and CV were employed to characterize the compositional and electrochemical properties of the solid films. The FTIR analysis indicates significant influence of glycerol on polymer/salt interactions, evidenced by the shift of FTIR bands to lower wavenumbers, signifying an increase in free ions within the host polymer system. Impedance results indicate that plasticizer addition reduces the bulk resistance to an optimum value of 49 ohm. The calculated DC values demonstrate the suitability of the electrolyte for use in energy storage applications (ESAs) with the highest ionic conductivity of 2.01 x 10-4 S cm-1. The high values of both epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} and epsilon ''\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }{\prime }}$$\end{document} at lower frequencies are due to interfacial polarization and the accumulation of charges, respectively. The sample with the largest plasticizer content has shown the highest epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} of 112.4 at 105 Hz. The shifting of tan delta peaks to the higher frequency side with the increase of plasticizer indicates an increase in the mobility of cations. The combination of tan delta plot and Argand plot was used to explore the dominant mechanism in ion conduction. The electrochemical studies were performed to detect the ability of the films to be used for EDLC applications. The TNM (tion=0.947) and LSV (decomposition voltage = 3.1 V) values favor the films for ESAs. The pattern of CV curves at various scan rates established the successful design of the EDLC device. The calculated capacitance from the area under CV curves is sufficiently high. The capacitance was influenced by scan rates and changed from 12.92 to 38.68 F/g.
引用
收藏
页码:3845 / 3868
页数:24
相关论文
共 50 条
  • [31] Eco-friendly guar gum polymer electrolytes doped with lithium nitrate for energy storage devices
    Venkatesh, K.
    Jenova, I.
    Shunmugavel, Karthikeyan
    Saminathan, Madeswaran
    Sheeba, D. Joice
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2025, 36 (03)
  • [32] Study of dielectric and interfacial properties of functional biopolymer-based electrolyte with enhanced conductivity for energy storage application
    Aziz, Shujahadeen B.
    Abdulwahid, Rebar T.
    Aziz, Dara M.
    Mohammed, Pshko A.
    Karim, Wrya O.
    Abdullah, Ranjdar M.
    Woo, Haw J.
    Halim, Norhana Abdul
    Hamsan, Muhamad H.
    Kadir, Mohd F. Z.
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 322
  • [33] A Simple, Quick and Eco-Friendly Strategy of Synthesis Nanosized α-LiFeO2 Cathode with Excellent Electrochemical Performance for Lithium-Ion Batteries
    Hu, Youzuo
    Zhao, Hongyuan
    Liu, Xingquan
    MATERIALS, 2018, 11 (07):
  • [34] Review on the sustainable recycling of spent ternary lithium-ion batteries: From an eco-friendly and efficient perspective
    Zhu, Xiang-nan
    Jiang, Si-qi
    Li, Xin-Long
    Yan, Shuai
    Li, Lin
    Qin, Xi-zhuang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 348
  • [35] Simple and Eco-Friendly Fabrication of Electrode Materials and Their Performance in High-Voltage Lithium-Ion Batteries
    Barbosa, Lucia
    Luna-Lama, Fernando
    Gonzalez Pena, Yarivith
    Caballero, Alvaro
    CHEMSUSCHEM, 2020, 13 (04) : 838 - 849
  • [36] Eco-friendly process toward collector- and binder-free, high-energy density electrodes for lithium-ion batteries
    Bibienne, Thomas
    Maillaud, Laurent
    Rousselot, Steeve
    Taylor, Lauren W.
    Pasquali, Matteo
    Dolle, Mickael
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (05) : 1407 - 1416
  • [37] Eco-friendly process toward collector- and binder-free, high-energy density electrodes for lithium-ion batteries
    Thomas Bibienne
    Laurent Maillaud
    Steeve Rousselot
    Lauren W. Taylor
    Matteo Pasquali
    Mickaël Dollé
    Journal of Solid State Electrochemistry, 2017, 21 : 1407 - 1416
  • [38] Eco-friendly production of carbon electrode from biomass for high performance Lithium and Zinc ion capacitors with hybrid energy storage characteristics
    Rajkumar, Palanisamy
    Thirumal, Vediyappan
    Radhika, Govindaraju
    Gnanamuthu, R. M.
    Subadevi, Rengapillai
    Sivakumar, Marimuthu
    Yoo, Kisoo
    Kim, Jinho
    MATERIALS LETTERS, 2024, 354
  • [39] Introducing an Efficient and Eco-Friendly Spray-Drying Process for the Synthesis of NCM Precursor for Lithium-ion Batteries
    Park, Hye-Jin
    Sim, Seong-Ju
    Jin, Bong-Soo
    Kim, Hyun-Soo
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2024, 15 (01) : 168 - 177
  • [40] Eco-friendly synthesis of rutile TiO2 nanostructures with controlled morphology for efficient lithium-ion batteries
    Gao, Renmei
    Jiao, Zheng
    Wang, Yong
    Xu, Laiqiang
    Xia, Saisai
    Zhang, Haijiao
    CHEMICAL ENGINEERING JOURNAL, 2016, 304 : 156 - 164