Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application

被引:7
|
作者
Aziz, Dara M. [1 ]
Abdulwahid, Rebar T. [2 ,3 ]
Hassan, Sangar A. [1 ]
Aziz, Shujahadeen B. [4 ,5 ]
Singh, Pramod K. [6 ]
Al-Asbahi, Bandar A. [7 ]
Ahmed, Abdullah A. A. [8 ,9 ]
Woo, H. J. [13 ]
Kadir, M. F. Z. [10 ,11 ]
Karim, Wrya O. [12 ]
机构
[1] Univ Raparin, Coll Sci, Dept Chem, Kurdistan Reg Govt, Main St, Ranyah 46012, Iraq
[2] Cihan Univ Sulaimaniya, Coll Hlth Sci, Med Lab Anal Dept, Sulaimaniya 46001, Kurdistan, Iraq
[3] Univ Sulaimani, Coll Educ, Kurdistan Reg Govt, Dept Phys, Old Campus, Sulaymaniyah 46001, Iraq
[4] Kurdistan Reg Govt, Univ Sulaimani, Res & Dev Ctr, Hameed Majid Adv Polymer Mat Res Lab, Sulaymaniyah 46001, Iraq
[5] Charmo Univ, Coll Sci, Dept Phys, Chamchamal 46023, Iraq
[6] Sharda Univ, Ctr Solar Cells & Renewable Energy, Dept Phys, Greater Noida 201310, India
[7] King Saud Univ, Coll Sci, Dept Phys & Astron, PO BOX 2455, Riyadh 11451, Saudi Arabia
[8] Univ Hamburg, Ctr Hybrid Nanostruct CHyN, Hamburg, Germany
[9] Univ Hamburg, Fachbereich Phys, D-20146 Hamburg, Germany
[10] Univ Malaya, Univ Malaya Ctr Ion Liquids UMCiL, Kuala Lumpur 50603, Malaysia
[11] Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur 50603, Malaysia
[12] Univ Sulaimani, Coll Sci, Dept Chem, Kurdistan Reg Govt, Qlyasan St, Sulaimani 46001, Iraq
[13] Univ Malaya, Ctr Ion Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur, Malaysia
关键词
Biopolymers; Plasticizer; Supercapacitor; Lithium perchlorate; Conductivity study; Ion transport parameters; SOLID POLYMER ELECTROLYTE; TRANSPORT-PROPERTIES; IMPEDANCE SPECTROSCOPY; ELECTRICAL-PROPERTIES; ETHYLENE CARBONATE; BLEND; STARCH; LIQUID; PERFORMANCE; GLYCEROL;
D O I
10.1007/s10924-024-03198-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates Li+ ion-conducting biopolymer blend electrolytes-based on chitosan (CS) and potato starch (PS) with glycerol plasticization. The advanced techniques including FTIR, impedance, TNM, LSV, and CV were employed to characterize the compositional and electrochemical properties of the solid films. The FTIR analysis indicates significant influence of glycerol on polymer/salt interactions, evidenced by the shift of FTIR bands to lower wavenumbers, signifying an increase in free ions within the host polymer system. Impedance results indicate that plasticizer addition reduces the bulk resistance to an optimum value of 49 ohm. The calculated DC values demonstrate the suitability of the electrolyte for use in energy storage applications (ESAs) with the highest ionic conductivity of 2.01 x 10-4 S cm-1. The high values of both epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} and epsilon ''\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }{\prime }}$$\end{document} at lower frequencies are due to interfacial polarization and the accumulation of charges, respectively. The sample with the largest plasticizer content has shown the highest epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} of 112.4 at 105 Hz. The shifting of tan delta peaks to the higher frequency side with the increase of plasticizer indicates an increase in the mobility of cations. The combination of tan delta plot and Argand plot was used to explore the dominant mechanism in ion conduction. The electrochemical studies were performed to detect the ability of the films to be used for EDLC applications. The TNM (tion=0.947) and LSV (decomposition voltage = 3.1 V) values favor the films for ESAs. The pattern of CV curves at various scan rates established the successful design of the EDLC device. The calculated capacitance from the area under CV curves is sufficiently high. The capacitance was influenced by scan rates and changed from 12.92 to 38.68 F/g.
引用
收藏
页码:3845 / 3868
页数:24
相关论文
共 50 条
  • [21] Developing eco-friendly ceramic composite separator with competitive electrochemical properties using water-based polymer binder for lithium-ion batteries
    Park, Bo Keun
    Ahn, Yong-Keon
    Kwon, Yong Kab
    Kim, Ki Jae
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (02) : 1398 - 1406
  • [22] Hydrogen Isotope Effects on Aqueous Electrolyte for Electrochemical Lithium-Ion Storage
    Chou, Jia
    Zhao, Yao
    Li, Xue-Ting
    Wang, Wen-Peng
    Tan, Shuang-Jie
    Wang, Ya-Hui
    Zhang, Juan
    Yin, Ya-Xia
    Wang, Fuyi
    Xin, Sen
    Guo, Yu-Guo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (25)
  • [23] Eco-Friendly, Direct Deposition of Metal Nanoparticles on Graphite for Electrochemical Energy Conversion and Storage
    Pandey, Rakesh K.
    Chen, Linfeng
    Teraji, Satoshi
    Nakanishi, Hideyuki
    Soh, Siowling
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) : 36525 - 36534
  • [24] APPLICATION OF LITHIUM-ION BATTERIES IN ENERGY STORAGE SYSTEMS
    Ke, Yi-Kuan
    Wu, Ting-Hong
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2019, 27 (04): : 326 - 331
  • [25] The electrochemical energy storage: contribution of the rechargeable lithium-ion batteries
    Franger, Sylvain
    Benoit, Charlotte
    Saint-Martin, Romuald
    ACTUALITE CHIMIQUE, 2008, (325): : 41 - 44
  • [26] Lithium-Ion Electrochemical Energy Storage: the Current State, Problems, and Development Trends in Russia
    Antipov, E., V
    Abakumov, A. M.
    Drozhzhin, O. A.
    Pogozhev, D., V
    THERMAL ENGINEERING, 2019, 66 (04) : 219 - 224
  • [27] Lithium-Ion Electrochemical Energy Storage: the Current State, Problems, and Development Trends in Russia
    E. V. Antipov
    A. M. Abakumov
    O. A. Drozhzhin
    D. V. Pogozhev
    Thermal Engineering, 2019, 66 : 219 - 224
  • [28] Eco-friendly carbon-based supercapacitors: Electrochemical properties and charge storage mechanisms
    Granata, V.
    Landi, G.
    Avallone, G.
    Barone, C.
    La Notte, L.
    Palma, A. L.
    Sdringola, P.
    Carapella, G.
    Puglisi, G.
    Pagano, S.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2024, 47 (05):
  • [29] Eco-friendly biopolymer kappa carrageenan with NH4Br application in energy saving battery
    Nithya, M.
    Alagar, M.
    Sundaresan, B.
    MATERIALS LETTERS, 2020, 263
  • [30] A comprehensive investigation on the electrochemical and thermal inconsistencies for 280 Ah energy storage lithium-ion battery
    Lin, Xiang -Wei
    Jiang, Yi
    Yu, Hai -Tao
    Shi, Ming -Yu
    Liu, Bo
    Wen, Xian-Liang
    Zhou, Zhifu
    ENERGY CONVERSION AND MANAGEMENT, 2024, 315