Task offloading mechanism based on federated reinforcement learning in mobile edge computing

被引:19
|
作者
Li, Jie [1 ]
Yang, Zhiping [1 ]
Wang, Xingwei [1 ]
Xia, Yichao [1 ]
Ni, Shijian [1 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110000, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Taskoffloading; QoS; Deep reinforcement learning; Federated learning; RESOURCE-ALLOCATION; MANAGEMENT; WIRELESS;
D O I
10.1016/j.dcan.2022.04.006
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
With the arrival of 5G, latency-sensitive applications are becoming increasingly diverse. Mobile Edge Computing (MEC) technology has the characteristics of high bandwidth, low latency and low energy consumption, and has attracted much attention among researchers. To improve the Quality of Service (QoS), this study focuses on computation offloading in MEC. We consider the QoS from the perspective of computational cost, dimensional disaster, user privacy and catastrophic forgetting of new users. The QoS model is established based on the delay and energy consumption and is based on DDQN and a Federated Learning (FL) adaptive task offloading algorithm in MEC. The proposed algorithm combines the QoS model and deep reinforcement learning algorithm to obtain an optimal offloading policy according to the local link and node state information in the channel coherence time to address the problem of time-varying transmission channels and reduce the computing energy consumption and task processing delay. To solve the problems of privacy and catastrophic forgetting, we use FL to make distributed use of multiple users' data to obtain the decision model, protect data privacy and improve the model universality. In the process of FL iteration, the communication delay of individual devices is too large, which affects the overall delay cost. Therefore, we adopt a communication delay optimization algorithm based on the unary outlier detection mechanism to reduce the communication delay of FL. The simulation results indicate that compared with existing schemes, the proposed method significantly reduces the computation cost on a device and improves the QoS when handling complex tasks.
引用
收藏
页码:492 / 504
页数:13
相关论文
共 50 条
  • [11] Reinforcement Learning for Task Offloading in Mobile Edge Computing for SDN based Wireless Networks
    Kiran, Nahida
    Pan, Chunyu
    Yin Changchuan
    2020 SEVENTH INTERNATIONAL CONFERENCE ON SOFTWARE DEFINED SYSTEMS (SDS), 2020, : 268 - 273
  • [12] Federated deep reinforcement learning-based online task offloading and resource allocation in harsh mobile edge computing environment
    Xiang, Hui
    Zhang, Meiyu
    Jian, Chengfeng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 3323 - 3339
  • [13] Learning-Based Task Offloading for Mobile Edge Computing
    Garaali, Rim
    Chaieb, Cirine
    Ajib, Wessam
    Afif, Meriem
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1659 - 1664
  • [14] Task graph offloading via deep reinforcement learning in mobile edge computing
    Liu, Jiagang
    Mi, Yun
    Zhang, Xinyu
    Li, Xiaocui
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 545 - 555
  • [15] Task Offloading for UAV-based Mobile Edge Computing via Deep Reinforcement Learning
    Li, Jun
    Liu, Qian
    Wu, Pingyang
    Shu, Feng
    Jin, Shi
    2018 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2018, : 798 - 802
  • [16] Dependent Task-Offloading Strategy Based on Deep Reinforcement Learning in Mobile Edge Computing
    Gong, Bencan
    Jiang, Xiaowei
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2023, 2023
  • [17] Deep reinforcement learning-based online task offloading in mobile edge computing networks
    Wu, Haixing
    Geng, Jingwei
    Bai, Xiaojun
    Jin, Shunfu
    INFORMATION SCIENCES, 2024, 654
  • [18] Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Liu, Xinping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 847 - 861
  • [19] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    IEEE ACCESS, 2020, 8 : 54074 - 54084
  • [20] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229