Task offloading mechanism based on federated reinforcement learning in mobile edge computing

被引:19
|
作者
Li, Jie [1 ]
Yang, Zhiping [1 ]
Wang, Xingwei [1 ]
Xia, Yichao [1 ]
Ni, Shijian [1 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110000, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Taskoffloading; QoS; Deep reinforcement learning; Federated learning; RESOURCE-ALLOCATION; MANAGEMENT; WIRELESS;
D O I
10.1016/j.dcan.2022.04.006
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
With the arrival of 5G, latency-sensitive applications are becoming increasingly diverse. Mobile Edge Computing (MEC) technology has the characteristics of high bandwidth, low latency and low energy consumption, and has attracted much attention among researchers. To improve the Quality of Service (QoS), this study focuses on computation offloading in MEC. We consider the QoS from the perspective of computational cost, dimensional disaster, user privacy and catastrophic forgetting of new users. The QoS model is established based on the delay and energy consumption and is based on DDQN and a Federated Learning (FL) adaptive task offloading algorithm in MEC. The proposed algorithm combines the QoS model and deep reinforcement learning algorithm to obtain an optimal offloading policy according to the local link and node state information in the channel coherence time to address the problem of time-varying transmission channels and reduce the computing energy consumption and task processing delay. To solve the problems of privacy and catastrophic forgetting, we use FL to make distributed use of multiple users' data to obtain the decision model, protect data privacy and improve the model universality. In the process of FL iteration, the communication delay of individual devices is too large, which affects the overall delay cost. Therefore, we adopt a communication delay optimization algorithm based on the unary outlier detection mechanism to reduce the communication delay of FL. The simulation results indicate that compared with existing schemes, the proposed method significantly reduces the computation cost on a device and improves the QoS when handling complex tasks.
引用
收藏
页码:492 / 504
页数:13
相关论文
共 50 条
  • [21] Deep Reinforcement Learning for Task Offloading in Edge Computing
    Xie, Bo
    Cui, Haixia
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 250 - 254
  • [22] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [23] Mobile-Aware Online Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing Networks
    Li, Yuting
    Liu, Yitong
    Liu, Xingcheng
    Tu, Qiang
    Xie, Yi
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [24] Federated Reinforcement Learning-Empowered Task Offloading for Large Models in Vehicular Edge Computing
    Wu, Huaming
    Gu, Anqi
    Liang, Yonghui
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 1979 - 1991
  • [25] Optimized task offloading for federated learning based on β-skeleton graph in edge computing
    Fallah, Mahdi
    Salehpour, Pedram
    TELECOMMUNICATION SYSTEMS, 2024, 87 (03) : 759 - 778
  • [26] Reinforcement Learning Based Offloading for Realtime Applications in Mobile Edge Computing
    Huang, Hui
    Ye, Qiang
    Du, Hongwei
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [27] Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing
    Gao, Xiaohu
    Ang, Mei Choo
    Althubiti, Sara A.
    JOURNAL OF GRID COMPUTING, 2023, 21 (04)
  • [28] Divisible Task Offloading for Multiuser Multiserver Mobile Edge Computing Systems Based on Deep Reinforcement Learning
    Tang, Lin
    Qin, Hang
    IEEE ACCESS, 2023, 11 : 83507 - 83522
  • [29] Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing
    Xiaohu Gao
    Mei Choo Ang
    Sara A. Althubiti
    Journal of Grid Computing, 2023, 21
  • [30] Cooperative Task Offloading for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning
    Yang, Jian
    Yuan, Qifeng
    Chen, Shuangwu
    He, Huasen
    Jiang, Xiaofeng
    Tan, Xiaobin
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (03): : 3205 - 3219