Federated deep reinforcement learning-based online task offloading and resource allocation in harsh mobile edge computing environment

被引:3
|
作者
Xiang, Hui [1 ]
Zhang, Meiyu [1 ]
Jian, Chengfeng [1 ]
机构
[1] Zhejiang Univ Technol, Comp Sci & Technol Coll, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Task offloading; Federated learning; Harsh mobile edge computing environment; Deep reinforcement learning; Resource allocation;
D O I
10.1007/s10586-023-04143-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the harsh mobile edge computing (HMEC) environment, there are many dynamic changes such as interference from noise, the impact of extreme environmental conditions, and the mobility of devices. It is a great challenge to the online realtime task offloading scheduling for delay-sensitive applications. However, the dynamic changes in HMEC environment have been ignored in almost all previous studies. Therefore, we propose the federated deep reinforcement learning-based online task offloading and resource allocation (FD-OTR) algorithm to address the task offloading in HMEC. Additionally, the FD-OTR algorithm performs resource allocation for offloaded tasks. The task offloading part of FD-OTR algorithm can be divided into two layers: the deep reinforcement learning (DRL) layer and the federated learning (FL) layer. The online algorithm in the DRL layer can adapt to the dynamic HMEC environment and make real-time task offloading decisions. In the FL layer, federated learning with low communication overhead is used for model aggregation to form a better global model. Resource allocation is done by using a new meta-heuristic algorithm: the Sparrow Search Algorithm (SSA). Finally, the simulation results demonstrate that the FD-OTR algorithm performs well in HMEC. The convergence speed of FD-OTR is three times faster than the centralized method. Compared to the baseline algorithms, FD-OTR reduces costs by 14.3%, 11.2% and 9.28%, respectively.
引用
收藏
页码:3323 / 3339
页数:17
相关论文
共 50 条
  • [1] Federated Deep Reinforcement Learning-based task offloading system in edge computing environment
    Merakchi, Hiba
    Bagaa, Miloud
    Messaoud, Ahmed Ouameur
    Ksentini, Adlen
    Sehad, Abdenour
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5580 - 5586
  • [2] Federated Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Smart Cities in a Mobile Edge Network
    Chen, Xing
    Liu, Guizhong
    SENSORS, 2022, 22 (13)
  • [3] Deep reinforcement learning-based online task offloading in mobile edge computing networks
    Wu, Haixing
    Geng, Jingwei
    Bai, Xiaojun
    Jin, Shunfu
    INFORMATION SCIENCES, 2024, 654
  • [4] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    IEEE ACCESS, 2020, 8 : 54074 - 54084
  • [5] Multi-Agent Deep Reinforcement Learning-Based Partial Task Offloading and Resource Allocation in Edge Computing Environment
    Ke, Hongchang
    Wang, Hui
    Sun, Hongbin
    ELECTRONICS, 2022, 11 (15)
  • [6] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [7] Federated Learning for Online Resource Allocation in Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Zheng, Jingjing
    Li, Kai
    Mhaisen, Naram
    Ni, Wei
    Tovar, Eduardo
    Guizani, Mohsen
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [8] Deep reinforcement learning-based dynamical task offloading for mobile edge computing
    Xie, Bo
    Cui, Haixia
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [9] Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing
    Yu, Zijia
    Xu, Xu
    Zhou, Wei
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [10] Deep reinforcement learning-based computation offloading and resource allocation in security-aware mobile edge computing
    Ke, H. C.
    Wang, H.
    Zhao, H. W.
    Sun, W. J.
    WIRELESS NETWORKS, 2021, 27 (05) : 3357 - 3373