A two stages prediction strategy for evolutionary dynamic multi-objective optimization

被引:10
|
作者
Sun, Hao [1 ,2 ]
Ma, Xuemin [1 ,2 ]
Hu, Ziyu [1 ,2 ]
Yang, Jingming [1 ,2 ]
Cui, Huihui [1 ,2 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Engn Res Ctr, Minist Educ Intelligent Control Syst & Intelligen, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic multi-objective problems; Evolutionary algorithm; Kalman filter; Support vector machine; ATTRIBUTE DECISION-MAKING; ALGORITHM; ENVIRONMENTS;
D O I
10.1007/s10489-022-03353-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many engineering and scientific research processes, the dynamic multi-objective problems (DMOPs) are widely involved. It's a quite challenge, which involves multiple conflicting objects changing over time or environment. The main task of DMOPs is tracking the Pareto front as soon as possible when the object changes over time. To accelerate the tracking process, a two stages prediction strategy (SPS) for DMOPs is proposed. To improve the prediction accuracy, population prediction is divided into center point prediction and manifold prediction when the change is detected. Due to the limitations of the support vector machine, the new population is predicted by the combination of the elite solution in the previous environment and Kalman filter in the early stage. Experimental results show that the proposed algorithm performs better on convergence and distribution when dealing with nonlinear problems, especially in the problems where the environmental change occurs frequently.
引用
收藏
页码:1115 / 1131
页数:17
相关论文
共 50 条
  • [31] A new Dynamic Multi-objective Optimization Evolutionary Algorithm
    Zheng, Bojin
    ICNC 2007: Third International Conference on Natural Computation, Vol 5, Proceedings, 2007, : 565 - 570
  • [32] A prediction strategy based on guide-individual for dynamic multi-objective optimization
    Institute of Information Engineering, Xiangtan University, Xiangtan
    Hunan
    411105, China
    不详
    Hunan
    411105, China
    Tien Tzu Hsueh Pao, 9 (1816-1825):
  • [33] A prediction strategy based on decision variable analysis for dynamic Multi-objective Optimization
    Zheng, Jinhua
    Zhou, Yubing
    Zou, Juan
    Yang, Shengxiang
    Ou, Junwei
    Hu, Yaru
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 60
  • [34] Combining mutual information and stable matching strategy for dynamic evolutionary multi-objective optimization
    Fu, Xiaogang
    Sun, Jianyong
    ENGINEERING OPTIMIZATION, 2018, 50 (09) : 1434 - 1452
  • [35] Dynamic multi-objective evolutionary algorithms for single-objective optimization
    Jiao, Ruwang
    Zeng, Sanyou
    Alkasassbeh, Jawdat S.
    Li, Changhe
    APPLIED SOFT COMPUTING, 2017, 61 : 793 - 805
  • [36] Evolutionary Multi-Objective Optimization
    Deb, Kalyanmoy
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2577 - 2602
  • [37] Evolutionary multi-objective optimization
    Coello Coello, Carlos A.
    Hernandez Aguirre, Arturo
    Zitzler, Eckart
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) : 1617 - 1619
  • [38] Calibrating an hydrological model by an evolutionary strategy for multi-objective optimization
    Araujo, Amarisio da S.
    de Campos Velho, Haroldo F.
    Gomes, Vitor C. F.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (03) : 438 - 450
  • [39] A Fast Hypervolume Contribution Strategy for Evolutionary Multi-Objective Optimization
    Lia, Mei
    Zhan, Dawei
    2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024, 2024, : 271 - 278
  • [40] A Survey on Search Strategy of Evolutionary Multi-Objective Optimization Algorithms
    Wang, Zitong
    Pei, Yan
    Li, Jianqiang
    APPLIED SCIENCES-BASEL, 2023, 13 (07):