A prediction strategy based on decision variable analysis for dynamic Multi-objective Optimization

被引:46
|
作者
Zheng, Jinhua [1 ,2 ]
Zhou, Yubing [1 ]
Zou, Juan [1 ]
Yang, Shengxiang [3 ]
Ou, Junwei [1 ]
Hu, Yaru [1 ]
机构
[1] Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Hunan, Peoples R China
[2] Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang 421002, Peoples R China
[3] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England
基金
中国国家自然科学基金;
关键词
Dynamic multi-objective optimization; Evolutionary algorithms; Decision Variable Analysis; Adaptive Selection; Diversity; EVOLUTIONARY ALGORITHM; ENVIRONMENTS; MEMORY;
D O I
10.1016/j.swevo.2020.100786
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many multi-objective optimization problems in reality are dynamic, requiring the optimization algorithm to quickly track the moving optima after the environment changes. Therefore, response strategies are often used in dynamic multi-objective algorithms to find Pareto optimal. In this paper, we propose a hybrid prediction strategy based on the classification of decision variables, which consists of three steps. After detecting the environment change, the first step is to analyze the influence of each decision variable on individual convergence and distribution in the new environment. The second step is to adopt different prediction methods for different decision variables. Finally, adaptive selection is applied to the solution set generated in the first and second steps, and solutions with good convergence and diversity are selected to make the initial population more adaptable to the new environment. The prediction strategy can help the solution set converge while maintaining its diversity. The experimental results and performance show that the proposed algorithm is capable of significantly improving the dynamic optimization performance compared with five state-of-the-art evolutionary algorithms.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Dynamic multi-objective optimization algorithm based on prediction strategy
    Li, Er-Chao
    Ma, Xiang-Qi
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2018, 21 (02): : 411 - 415
  • [2] A Novel Prediction Strategy Based on Change Degree of Decision Variables for Dynamic Multi-Objective Optimization
    Ou, Junwei
    Xing, Lining
    Liu, Min
    Yang, Lihua
    IEEE ACCESS, 2020, 8 : 13362 - 13374
  • [3] The IGD-based prediction strategy for dynamic multi-objective optimization
    Hu, Yaru
    Peng, Jiankang
    Ou, Junwei
    Li, Yana
    Zheng, Jinhua
    Zou, Juan
    Jiang, Shouyong
    Yang, Shengxiang
    Li, Jun
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 91
  • [4] Prediction strategy based on reference line for dynamic multi-objective optimization
    Li E.-C.
    Zhao Y.-M.
    Li, Er-Chao (lecstarr@163.com), 1600, Northeast University (35): : 1547 - 1560
  • [5] An acceleration-based prediction strategy for dynamic multi-objective optimization
    Junxi Zhang
    Shiru Qu
    Zhiteng Zhang
    Shaokang Cheng
    Mingxing Li
    Yang Bi
    Soft Computing, 2024, 28 (2) : 1215 - 1228
  • [6] An ensemble learning based prediction strategy for dynamic multi-objective optimization
    Wang, Feng
    Li, Yixuan
    Liao, Fanshu
    Yan, Hongyang
    APPLIED SOFT COMPUTING, 2020, 96
  • [7] An acceleration-based prediction strategy for dynamic multi-objective optimization
    Zhang, Junxi
    Qu, Shiru
    Zhang, Zhiteng
    Cheng, Shaokang
    Li, Mingxing
    Bi, Yang
    SOFT COMPUTING, 2024, 28 (02) : 1215 - 1228
  • [8] Dynamic multi-objective immune optimization algorithm based on prediction strategy
    Liu, Ruo-Chen
    Ma, Ya-Juan
    Zhang, Lang
    Shang, Rong-Hua
    Jisuanji Xuebao/Chinese Journal of Computers, 2015, 38 (08): : 1544 - 1560
  • [9] A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization
    Liang, Zhengping
    Zou, Ya
    Zheng, Shunxiang
    Yang, Shengxiang
    Zhu, Zexuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 172
  • [10] A prediction strategy based on guide-individual for dynamic multi-objective optimization
    Institute of Information Engineering, Xiangtan University, Xiangtan
    Hunan
    411105, China
    不详
    Hunan
    411105, China
    Tien Tzu Hsueh Pao, 9 (1816-1825):