Combining mutual information and stable matching strategy for dynamic evolutionary multi-objective optimization

被引:0
|
作者
Fu, Xiaogang [1 ]
Sun, Jianyong [2 ]
机构
[1] Shanghai Dianji Univ, Sch Elect Engn, Shanghai, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective evolutionary algorithm; dynamic multiobjective optimization; kinematics model; mutual information; stable matching strategy; ALGORITHM;
D O I
10.1080/0305215X.2017.1401066
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is reasonable to assume that the changing of the optimization environment is smooth when considering a dynamic multi-objective optimization problem. Learning techniques are widely used to explore the dependence structure to facilitate population re-initialization in evolutionary search paradigms. The aim of the learning techniques is to discover knowledge from history information, thereby to track the movement of the optimal front quickly through good initialization when a change occurs. In this article, a new learning strategy is proposed, where the main ideas are (1) to use mutual information to identify the relationship between previously found approximated solutions; (2) to use a stable matching mechanism strategy to associate previously found optimal solutions bijectively; and (3) to re-initialize the new population based on a kinematics model. Controlled experiments were carried out systematically on some widely used test problems. Comparison against several state-of-the-art dynamic multi-objective evolutionary algorithms showed comparable performance in favour of the developed algorithm.
引用
收藏
页码:1434 / 1452
页数:19
相关论文
共 50 条
  • [1] Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization
    Wang Y.
    Li B.
    Memetic Computing, 2010, 2 (1) : 3 - 24
  • [2] A two stages prediction strategy for evolutionary dynamic multi-objective optimization
    Sun, Hao
    Ma, Xuemin
    Hu, Ziyu
    Yang, Jingming
    Cui, Huihui
    APPLIED INTELLIGENCE, 2023, 53 (01) : 1115 - 1131
  • [3] A two stages prediction strategy for evolutionary dynamic multi-objective optimization
    Hao Sun
    Xuemin Ma
    Ziyu Hu
    Jingming Yang
    Huihui Cui
    Applied Intelligence, 2023, 53 : 1115 - 1131
  • [4] An Adaptive Knowledge Transfer Strategy for Evolutionary Dynamic Multi-objective Optimization
    Zhao, Donghui
    Lu, Xiaofen
    Tang, Ke
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 1, BIC-TA 2023, 2024, 2061 : 185 - 199
  • [5] An evolutionary algorithm for dynamic multi-objective optimization
    Wang, Yuping
    Dang, Chuangyin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 6 - 18
  • [6] Dynamic multi-objective optimization evolutionary algorithm
    Liu, Chun-an
    Wang, Yuping
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2007, : 456 - +
  • [7] A predictive strategy based on special points for evolutionary dynamic multi-objective optimization
    Qingya Li
    Juan Zou
    Shengxiang Yang
    Jinhua Zheng
    Gan Ruan
    Soft Computing, 2019, 23 : 3723 - 3739
  • [8] A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization
    Liang, Zhengping
    Zou, Ya
    Zheng, Shunxiang
    Yang, Shengxiang
    Zhu, Zexuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 172
  • [9] Multi-objective integrated optimization based on evolutionary strategy with a dynamic weighting schedule
    School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
    Journal of Southeast University (English Edition), 2006, 22 (02) : 204 - 207
  • [10] New prediction strategy based evolutionary algorithm for dynamic multi-objective optimization
    Wan, Mengyi
    Wu, Yan
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (03): : 124 - 135