Gevrey regularity for the Euler-Bernoulli beam equation with localized structural damping

被引:2
|
作者
Caggio, Matteo [1 ]
Dell'Oro, Filippo [2 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Prague, Czech Republic
[2] Politecn Milan, Dipartimento Matemat, Milan, Italy
关键词
Euler-Bernoulli beam; localized structural damping; Gevrey class; differentiability; exponential stability; EXACT CONTROLLABILITY; EXPONENTIAL DECAY; DISSIPATION; SEMIGROUPS; STABILITY; ENERGY;
D O I
10.1080/00036811.2023.2256354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a Euler-Bernoulli beam equation with localized discontinuous structural damping. As our main result, we prove that the associated C-0- semigroup (S(t))(t >= 0) is of Gevrey class delta > 24 for t > 0, hence immediately differentiable. Moreover, we show that (S(t))(t >= 0) is exponentially stable.
引用
收藏
页码:1587 / 1603
页数:17
相关论文
共 50 条
  • [31] Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model
    Shubov, Marianna A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (18) : 2181 - 2199
  • [32] Boundary PID output regulation for Euler-Bernoulli beam equation
    Fan, Xueru
    Xu, Cheng-Zhong
    Kou, Chunhai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (01)
  • [33] Robust output feedback Control for an Euler-Bernoulli Beam Equation
    Guo, Bao-Zhu
    Meng, Tingting
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 800 - 805
  • [34] FOURIER METHOD FOR INVERSE COEFFICIENT EULER-BERNOULLI BEAM EQUATION
    Baglan, Irem
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 514 - 527
  • [35] A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping
    Raposo, C. A.
    Bastos, W. D.
    Avila, J. A. J.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011, 5 (01): : 17 - 28
  • [37] A finite element approximation to a viscoelastic Euler-Bernoulli beam with internal damping
    Li, Yiqun
    Wang, Hong
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 212 : 138 - 158
  • [38] A note on the integrability of a remarkable static Euler-Bernoulli beam equation
    Fatima, A.
    Bokhari, Ashfaque H.
    Mahomed, F. M.
    Zaman, F. D.
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 101 - 108
  • [39] An inverse spectral problem for the Euler-Bernoulli equation for the vibrating beam
    Papanicolaou, VG
    Kravvaritis, D
    INVERSE PROBLEMS, 1997, 13 (04) : 1083 - 1092
  • [40] The Exact Frequency Equations for the Euler-Bernoulli Beam Subject to Boundary Damping
    Biselli, Angela
    Coleman, Matthew P.
    INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2020, 25 (02): : 183 - 189