Gevrey regularity for the Euler-Bernoulli beam equation with localized structural damping

被引:2
|
作者
Caggio, Matteo [1 ]
Dell'Oro, Filippo [2 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Prague, Czech Republic
[2] Politecn Milan, Dipartimento Matemat, Milan, Italy
关键词
Euler-Bernoulli beam; localized structural damping; Gevrey class; differentiability; exponential stability; EXACT CONTROLLABILITY; EXPONENTIAL DECAY; DISSIPATION; SEMIGROUPS; STABILITY; ENERGY;
D O I
10.1080/00036811.2023.2256354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a Euler-Bernoulli beam equation with localized discontinuous structural damping. As our main result, we prove that the associated C-0- semigroup (S(t))(t >= 0) is of Gevrey class delta > 24 for t > 0, hence immediately differentiable. Moreover, we show that (S(t))(t >= 0) is exponentially stable.
引用
收藏
页码:1587 / 1603
页数:17
相关论文
共 50 条
  • [21] Vibration modes of the Euler-Bernoulli beam equation with singularities
    Dias, Nuno Costa
    Jorge, Cristina
    Prata, Joao Nuno
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 381 : 185 - 208
  • [22] AN EULER-BERNOULLI BEAM WITH NONLINEAR DAMPING AND A NONLINEAR SPRING AT THE TIP
    Miletic, Maja
    Stuerzer, Dominik
    Arnold, Anton
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (09): : 3029 - 3055
  • [23] THE EFFECT OF STRUCTURAL DAMPING ON NODES FOR THE EULER-BERNOULLI BEAM - A SPECIFIC CASE-STUDY
    GEIST, B
    MCLAUGHLIN, JR
    APPLIED MATHEMATICS LETTERS, 1994, 7 (03) : 51 - 55
  • [24] Stabilization of a nonlinear Euler-Bernoulli beam by locally distributed damping
    Chow, PL
    Deng, ZB
    OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF PROFESSOR ALAIN BENSOUSSAN'S 60TH BIRTHDAY, 2001, : 137 - 145
  • [25] The well-posedness and regularity of the Euler-Bernoulli equation with variable coefficients
    Zhang, Zhi-Xiong
    Guo, Bao-Zhu
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 2246 - +
  • [26] The periodic Euler-Bernoulli equation
    Papanicolaou, VG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (09) : 3727 - 3759
  • [27] Euler-Bernoulli Equation Today
    Filipovic, Mirjana
    2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 5691 - 5696
  • [28] ASYMPTOTIC BEHAVIOR OF THE TRANSMISSION EULER-BERNOULLI PLATE AND WAVE EQUATION WITH A LOCALIZED KELVIN-VOIGT DAMPING
    Hassine, Fathi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (06): : 1757 - 1774
  • [29] Unboundedness for the Euler-Bernoulli beam equation with a fractional boundary dissipation
    Labidi, S
    Tatar, NE
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (03) : 697 - 706
  • [30] Noether Symmetry Analysis of the Dynamic Euler-Bernoulli Beam Equation
    Johnpillai, A. G.
    Mahomed, K. S.
    Harley, C.
    Mahomed, F. M.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (05): : 447 - 456