A finite element approximation to a viscoelastic Euler-Bernoulli beam with internal damping

被引:3
|
作者
Li, Yiqun [1 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Viscoelastic Euler-Bernoulli beam; Variable-order time fractional PDE; Regularity estimate; Finite element approximation; Error estimate; FRACTIONAL-DERIVATIVE MODEL; VARIABLE-ORDER; NUMERICAL APPROXIMATION; EVOLUTION EQUATION; DIFFERENCE METHOD; POWER-LAW; CALCULUS;
D O I
10.1016/j.matcom.2023.04.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We analyze a finite element approximation to a viscoelastic Euler-Bernoulli beam with internal damping that undergoes vibrations under external excitation. We prove the wellposedness of the problem and regularity estimates of the exact solution to the model. We then utilize these results to prove an optimal-order error estimate of the numerical approximation assuming only the regularity of the data of the model but not that of the exact solution. Because the model exhibits its salient features that are different from those of conventional elastic Euler-Bernoulli beams, a new estimate technique is used in the analysis. We finally carry out numerical experiments to substantiate the error estimate and to investigate the dynamic response of the viscoelastic Euler-Bernoulli beam, in comparison with the conventional Euler-Bernoulli beam. (c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 158
页数:21
相关论文
共 50 条
  • [1] Control of a viscoelastic translational Euler-Bernoulli beam
    Berkani, Amirouche
    Tatar, Nasser-eddine
    Khemmoudj, Ammar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (01) : 237 - 254
  • [2] Stabilization of a viscoelastic rotating Euler-Bernoulli beam
    Berkani, Amirouche
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 2939 - 2960
  • [3] Spectral finite element for vibration analysis of cracked viscoelastic Euler-Bernoulli beam subjected to moving load
    Sarvestan, Vahid
    Mirdamadi, Hamid Reza
    Ghayour, Mostafa
    Mokhtari, Ali
    ACTA MECHANICA, 2015, 226 (12) : 4259 - 4280
  • [4] Vibration Control of a Viscoelastic Translational Euler-Bernoulli Beam
    Berkani, Amirouche
    Tatar, Nasser-eddine
    Kelleche, Abdelkarim
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2018, 24 (01) : 167 - 199
  • [5] Vibration Control of a Viscoelastic Translational Euler-Bernoulli Beam
    Amirouche Berkani
    Nasser-eddine Tatar
    Abdelkarim Kelleche
    Journal of Dynamical and Control Systems, 2018, 24 : 167 - 199
  • [6] On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping
    Park, JY
    Park, SH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (03) : 425 - 436
  • [7] AN EULER-BERNOULLI BEAM WITH NONLINEAR DAMPING AND A NONLINEAR SPRING AT THE TIP
    Miletic, Maja
    Stuerzer, Dominik
    Arnold, Anton
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (09): : 3029 - 3055
  • [8] Finite Segment Model Complexity of an Euler-Bernoulli Beam
    Louca, Loucas S.
    IFAC PAPERSONLINE, 2015, 48 (01): : 334 - 340
  • [9] Stabilization of a nonlinear Euler-Bernoulli beam by locally distributed damping
    Chow, PL
    Deng, ZB
    OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF PROFESSOR ALAIN BENSOUSSAN'S 60TH BIRTHDAY, 2001, : 137 - 145
  • [10] Viscoelastic Timoshenko beam solutions from Euler-Bernoulli solutions
    Wang, CM
    Yang, TQ
    Lam, KY
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1997, 123 (07): : 746 - 748