A finite element approximation to a viscoelastic Euler-Bernoulli beam with internal damping

被引:3
|
作者
Li, Yiqun [1 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Viscoelastic Euler-Bernoulli beam; Variable-order time fractional PDE; Regularity estimate; Finite element approximation; Error estimate; FRACTIONAL-DERIVATIVE MODEL; VARIABLE-ORDER; NUMERICAL APPROXIMATION; EVOLUTION EQUATION; DIFFERENCE METHOD; POWER-LAW; CALCULUS;
D O I
10.1016/j.matcom.2023.04.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We analyze a finite element approximation to a viscoelastic Euler-Bernoulli beam with internal damping that undergoes vibrations under external excitation. We prove the wellposedness of the problem and regularity estimates of the exact solution to the model. We then utilize these results to prove an optimal-order error estimate of the numerical approximation assuming only the regularity of the data of the model but not that of the exact solution. Because the model exhibits its salient features that are different from those of conventional elastic Euler-Bernoulli beams, a new estimate technique is used in the analysis. We finally carry out numerical experiments to substantiate the error estimate and to investigate the dynamic response of the viscoelastic Euler-Bernoulli beam, in comparison with the conventional Euler-Bernoulli beam. (c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 158
页数:21
相关论文
共 50 条
  • [31] Stabilization of a nonlinear Euler-Bernoulli beam
    Benterki, Djamila
    Tatar, Nasser-Eddine
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 479 - 496
  • [32] Vibration analysis of Euler-Bernoulli nanobeams by using finite element method
    Eltaher, M. A.
    Alshorbagy, Amal E.
    Mahmoud, F. F.
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (07) : 4787 - 4797
  • [33] Identifiability of stiffness and damping coefficients in Euler-Bernoulli beam equations with Kelvin-Voigt damping
    Ito, K
    Nakagiri, S
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (1-2) : 107 - 129
  • [34] FINITE ELEMENT ANALYSIS OF WAVE PROPAGATION IN PERIODIC EULER-BERNOULLI BEAMS
    Hussein, Mahmoud I.
    Elabbasi, Nagi
    Liu, Liao
    IMECE2009, VOL 15: SOUND, VIBRATION AND DESIGN, 2010, : 163 - 169
  • [35] Euler-Bernoulli interval finite element with spatially varying uncertain properties
    Sofi, Alba
    ACTA MECHANICA, 2017, 228 (11) : 3771 - 3787
  • [36] Investigating Fractional Damping Effect on Euler-Bernoulli Beam Subjected to a Moving Load
    AlSaleh, Raed
    Nasir, Ayman
    Abu-Alshaikh, Ibrahim
    SHOCK AND VIBRATION, 2023, 2023
  • [37] Stress-based finite element method for Euler-Bernoulli beams
    Kuo, YL
    Cleghorn, WL
    Behdinan, K
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2006, 30 (01) : 1 - 6
  • [38] Dynamics of a Euler-Bernoulli beam on nonlinear viscoelastic foundations: a parameter space analysis
    Soares, Gilson V.
    Ladeira, Denis G.
    Oliveira, Adelcio C.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [39] Analysis of Euler-Bernoulli Beam with Piecewise Quadratic Hermite Finite Elements
    Li, Congying
    Zhang, Hanjie
    Wang, Dongdong
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 163 - 167
  • [40] Dynamic response of a finite length euler-bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force
    Alkim Deniz Senalp
    Aytac Arikoglu
    Ibrahim Ozkol
    Vedat Ziya Dogan
    Journal of Mechanical Science and Technology, 2010, 24 : 1957 - 1961