Microcanonical Hamiltonian Monte Carlo

被引:0
|
作者
Robnik, Jakob [1 ]
De Luca, G. Bruno [2 ]
Silverstein, Eva [2 ]
Seljak, Uros [1 ,3 ]
机构
[1] Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
[2] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA
[3] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Monte Carlo Sampling; Hamiltonian Dynamics; Langevin Dynamics; Bayesian inference;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop Microcanonical Hamiltonian Monte Carlo (MCHMC), a class of models that follow fixed energy Hamiltonian dynamics, in contrast to Hamiltonian Monte Carlo (HMC), which follows canonical distribution with different energy levels. MCHMC tunes the Hamiltonian function such that the marginal of the uniform distribution on the constant-energy surface over the momentum variables gives the desired target distribution. We show that MCHMC requires occasional energy-conserving billiard-like momentum bounces for ergodicity, analogous to momentum resampling in HMC. We generalize the concept of bounces to a continuous version with partial direction preserving bounces at every step, which gives energy-conserving underdamped Langevin-like dynamics with non-Gaussian noise (MCLMC). MCHMC and MCLMC exhibit favorable scalings with condition number and dimensionality. We develop an efficient hyperparameter tuning scheme that achieves high performance and consistently outperforms NUTS HMC on several standard benchmark problems, in some cases by orders of magnitude.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Exponential Integration for Hamiltonian Monte Carlo
    Chao, Wei-Lun
    Solomon, Justin
    Michels, Dominik L.
    Sha, Fei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1142 - 1151
  • [32] The geometric foundations of Hamiltonian Monte Carlo
    Betancourt, Michael
    Byrne, Simon
    Livingstone, Sam
    Girolami, Mark
    BERNOULLI, 2017, 23 (4A) : 2257 - 2298
  • [33] Couplings for Multinomial Hamiltonian Monte Carlo
    Xu, Kai
    Fjelde, Tor Erlend
    Sutton, Charles
    Ge, Hong
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [34] Shadow Manifold Hamiltonian Monte Carlo
    van der Heide, Chris
    Hodgkinson, Liam
    Roosta, Fred
    Kroese, Dirk P.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [35] Learning Hamiltonian Monte Carlo in R
    Thomas, Samuel
    Tu, Wanzhu
    AMERICAN STATISTICIAN, 2021, 75 (04): : 403 - 413
  • [36] Reflection, Refraction, and Hamiltonian Monte Carlo
    Afshar, Hadi Mohasel
    Domke, Justin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [37] Stochastic Gradient Hamiltonian Monte Carlo
    Chen, Tianqi
    Fox, Emily B.
    Guestrin, Carlos
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1683 - 1691
  • [38] Quantum dynamical Hamiltonian Monte Carlo
    Lockwood, Owen
    Weiss, Peter
    Aronshtein, Filip
    Verdon, Guillaume
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [39] Stochastic approximation Hamiltonian Monte Carlo
    Yun, Jonghyun
    Shin, Minsuk
    Hoon Jin, Ick
    Liang, Faming
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (17) : 3135 - 3156
  • [40] Unbiased Hamiltonian Monte Carlo with couplings
    Heng, J.
    Jacob, P. E.
    BIOMETRIKA, 2019, 106 (02) : 287 - 302