Quantum dynamical Hamiltonian Monte Carlo

被引:2
|
作者
Lockwood, Owen [1 ,2 ]
Weiss, Peter [3 ]
Aronshtein, Filip [3 ]
Verdon, Guillaume [2 ,4 ,5 ]
机构
[1] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[2] Extropic Corp, San Francisco, CA 94111 USA
[3] Dirac Inc, New York, NY 10001 USA
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
COMPUTATIONAL ADVANTAGE; FOUNDATIONS;
D O I
10.1103/PhysRevResearch.6.033142
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One of the open challenges in quantum computing is to find meaningful and practical methods to leverage quantum computation to accelerate classical machine-learning workflows. A ubiquitous problem in machinelearning workflows is sampling from probability distributions that we only have access to via their log probability. To this end, we extend the well-known Hamiltonian Monte Carlo (HMC) method for Markov chain Monte Carlo (MCMC) sampling to leverage quantum computation in a hybrid manner as a proposal function. Our new algorithm, Quantum Dynamical Hamiltonian Monte Carlo (QD-HMC), replaces the classical symplectic integration proposal step with simulations of quantum-coherent continuous-space dynamics on digital or analog quantum computers. We show that QD-HMC maintains key characteristics of HMC, such as maintaining the detailed balanced condition with momentum inversion, while also having the potential for polynomial speedups over its classical counterpart in certain scenarios. As sampling is a core subroutine in many forms of probabilistic inference, and MCMC in continuously parametrized spaces covers a large class of potential applications, this work widens the areas of applicability of quantum devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Monte Carlo Hamiltonian:: Generalization to quantum field theory
    Luo, XQ
    Jirari, H
    Kröger, H
    Moriarty, KJM
    NON-PERTUBATIVE METHODS AND LATTICE QCD, 2001, : 100 - 111
  • [2] Quantum-Inspired Magnetic Hamiltonian Monte Carlo
    Mongwe, Wilson Tsakane
    Mbuvha, Rendani
    Marwala, Tshilidzi
    PLOS ONE, 2021, 16 (10):
  • [3] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    PHYSICS LETTERS A, 1999, 258 (01) : 6 - 14
  • [4] Monte Carlo Hamiltonian
    Jirari, H.
    Kröger, H.
    Luo, X.Q.
    Moriarty, K.J.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (01): : 6 - 14
  • [5] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Huang, CQ
    Jiang, JQ
    Luo, XQ
    Moriarty, KJM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 953 - 955
  • [6] Quantum Monte Carlo formalism for dynamical pions and nucleons
    Madeira, Lucas
    Lovato, Alessandro
    Pederiva, Francesco
    Schmidt, Kevin E.
    PHYSICAL REVIEW C, 2018, 98 (03)
  • [7] Monte Carlo Hamiltonian -: from statistical physics to quantum theory
    Luo, XQ
    Huang, CQ
    Jiang, JQ
    Jirari, H
    Kröger, H
    Moriarty, KJM
    PHYSICA A, 2000, 281 (1-4): : 201 - 206
  • [8] The dynamical cluster approximation with quantum Monte Carlo cluster solvers
    Jarrell, M.
    Macridin, A.
    Mikelsons, K.
    Doluweera, D. G. S. P.
    Gubernatis, J. E.
    LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XII, 2008, 1014 : 34 - +
  • [9] Split Hamiltonian Monte Carlo
    Babak Shahbaba
    Shiwei Lan
    Wesley O. Johnson
    Radford M. Neal
    Statistics and Computing, 2014, 24 : 339 - 349
  • [10] Magnetic Hamiltonian Monte Carlo
    Tripuraneni, Nilesh
    Rowland, Mark
    Ghahramani, Zoubin
    Turner, Richard
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70