Quantum dynamical Hamiltonian Monte Carlo

被引:2
|
作者
Lockwood, Owen [1 ,2 ]
Weiss, Peter [3 ]
Aronshtein, Filip [3 ]
Verdon, Guillaume [2 ,4 ,5 ]
机构
[1] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[2] Extropic Corp, San Francisco, CA 94111 USA
[3] Dirac Inc, New York, NY 10001 USA
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
COMPUTATIONAL ADVANTAGE; FOUNDATIONS;
D O I
10.1103/PhysRevResearch.6.033142
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One of the open challenges in quantum computing is to find meaningful and practical methods to leverage quantum computation to accelerate classical machine-learning workflows. A ubiquitous problem in machinelearning workflows is sampling from probability distributions that we only have access to via their log probability. To this end, we extend the well-known Hamiltonian Monte Carlo (HMC) method for Markov chain Monte Carlo (MCMC) sampling to leverage quantum computation in a hybrid manner as a proposal function. Our new algorithm, Quantum Dynamical Hamiltonian Monte Carlo (QD-HMC), replaces the classical symplectic integration proposal step with simulations of quantum-coherent continuous-space dynamics on digital or analog quantum computers. We show that QD-HMC maintains key characteristics of HMC, such as maintaining the detailed balanced condition with momentum inversion, while also having the potential for polynomial speedups over its classical counterpart in certain scenarios. As sampling is a core subroutine in many forms of probabilistic inference, and MCMC in continuously parametrized spaces covers a large class of potential applications, this work widens the areas of applicability of quantum devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems
    Kramer, Andrei
    Calderhead, Ben
    Radde, Nicole
    BMC BIOINFORMATICS, 2014, 15
  • [22] Adaptive Tuning of Hamiltonian Monte Carlo Within Sequential Monte Carlo
    Buchholz, Alexander
    Chopin, Nicolas
    Jacob, Pierre E.
    BAYESIAN ANALYSIS, 2021, 16 (03): : 745 - 771
  • [23] Dynamical exponent of a quantum critical itinerant ferromagnet: A Monte Carlo study
    Liu, Yuzhi
    Jiang, Weilun
    Klein, Avraham
    Wang, Yuxuan
    Sun, Kai
    Chubukov, Andrey, V
    Meng, Zi Yang
    PHYSICAL REVIEW B, 2022, 105 (04)
  • [24] Dynamical triplet unraveling : A quantum Monte Carlo algorithm for reversible dynamics
    Chessex, Romain
    Borrelli, Massimo
    Oettinger, Hans Christian
    PHYSICAL REVIEW A, 2022, 106 (02)
  • [25] A Quantum-Inspired Hamiltonian Monte Carlo Method for Missing Data Imputation
    Kochan, Didem
    Zhang, Zheng
    Yang, Xiu
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 190, 2022, 190
  • [26] QUANTUM MONTE-CARLO STUDY OF THE 2-IMPURITY KONDO HAMILTONIAN
    FYE, RM
    HIRSCH, JE
    PHYSICAL REVIEW B, 1989, 40 (07) : 4780 - 4796
  • [27] Hamiltonian Monte Carlo application to (2+1)- dimensional quantum mechanics
    Jiang, JQ
    Huang, CQ
    Luo, XQ
    Jirari, H
    Kröger, H
    Moriarty, K
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2000, 34 (04) : 723 - 728
  • [28] On the geometric ergodicity of Hamiltonian Monte Carlo
    Livingstone, Samuel
    Betancourt, Michael
    Byrne, Simon
    Girolami, Mark
    BERNOULLI, 2019, 25 (4A) : 3109 - 3138
  • [29] Split Hamiltonian Monte Carlo revisited
    Fernando Casas
    Jesús María Sanz-Serna
    Luke Shaw
    Statistics and Computing, 2022, 32
  • [30] On Lq convergence of the Hamiltonian Monte Carlo
    Ghosh, Soumyadip
    Lu, Yingdong
    Nowicki, Tomasz
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (01) : 161 - 169