Microcanonical Hamiltonian Monte Carlo

被引:0
|
作者
Robnik, Jakob [1 ]
De Luca, G. Bruno [2 ]
Silverstein, Eva [2 ]
Seljak, Uros [1 ,3 ]
机构
[1] Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
[2] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA
[3] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Monte Carlo Sampling; Hamiltonian Dynamics; Langevin Dynamics; Bayesian inference;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop Microcanonical Hamiltonian Monte Carlo (MCHMC), a class of models that follow fixed energy Hamiltonian dynamics, in contrast to Hamiltonian Monte Carlo (HMC), which follows canonical distribution with different energy levels. MCHMC tunes the Hamiltonian function such that the marginal of the uniform distribution on the constant-energy surface over the momentum variables gives the desired target distribution. We show that MCHMC requires occasional energy-conserving billiard-like momentum bounces for ergodicity, analogous to momentum resampling in HMC. We generalize the concept of bounces to a continuous version with partial direction preserving bounces at every step, which gives energy-conserving underdamped Langevin-like dynamics with non-Gaussian noise (MCLMC). MCHMC and MCLMC exhibit favorable scalings with condition number and dimensionality. We develop an efficient hyperparameter tuning scheme that achieves high performance and consistently outperforms NUTS HMC on several standard benchmark problems, in some cases by orders of magnitude.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] Monte Carlo Hamiltonian:Inverse Potential
    LUO Xiang-Qian~1 CHENG Xiao-Ni~1 Helmut KR(?)GER~21 Department of Physics
    CommunicationsinTheoreticalPhysics, 2004, 41 (04) : 509 - 512
  • [42] SpHMC: Spectral Hamiltonian Monte Carlo
    Xiong, Haoyi
    Wang, Kafeng
    Bian, Jiang
    Zhu, Zhanxing
    Xu, Cheng-Zhong
    Guo, Zhishan
    Huan, Jun
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5516 - 5524
  • [43] Monte Carlo Hamiltonian:: Inverse potential
    Luo, XQ
    Cheng, XN
    Kröger, H
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (04) : 509 - 512
  • [44] Shadow Magnetic Hamiltonian Monte Carlo
    Mongwe, Wilson Tsakane
    Mbuvha, Rendani
    Marwala, Tshilidzi
    IEEE ACCESS, 2022, 10 : 34340 - 34351
  • [45] Continuously tempered Hamiltonian Monte Carlo
    Graham, Matthew M.
    Storkey, Amos J.
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [46] Monte Carlo Hamiltonian:: Linear potentials
    Luo, XQ
    Liu, JJ
    Huang, CQ
    Jiang, JQ
    Kröger, H
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (05) : 561 - 565
  • [47] COUPLING AND CONVERGENCE FOR HAMILTONIAN MONTE CARLO
    Bou-Rabee, Nawaf
    Eberle, Andreas
    Zimmer, Raphael
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (03): : 1209 - 1250
  • [48] Positive Curvature and Hamiltonian Monte Carlo
    Seiler, Christof
    Rubinstein-Salzedo, Simon
    Holmes, Susan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [49] MONTE-CARLO RENORMALIZED HAMILTONIAN
    GUPTA, R
    CORDERY, R
    PHYSICS LETTERS A, 1984, 105 (08) : 415 - 417
  • [50] Adaptive Magnetic Hamiltonian Monte Carlo
    Mongwe, Wilson Tsakane
    Mbuvha, Rendani
    Marwala, Tshilidzi
    IEEE ACCESS, 2021, 9 : 152993 - 153003