Semigroup decay for the linearized kinetic ellipsoidal Fokker-Planck equation

被引:0
|
作者
Sun, Baoyan [1 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Kinetic ellipsoidal Fokker-Planck; equation; Hypocoercivity; Spectral gap; Semigroup; Exponential decay; BOLTZMANN-EQUATION; SPECTRUM ANALYSIS; BGK MODEL; HYPOCOERCIVITY; EQUILIBRIUM; RELAXATION; CONVERGENCE;
D O I
10.1016/j.jmaa.2022.126780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the semigroup decay for the linearized kinetic ellipsoidal Fokker-Planck equation in the torus. This model is an extension of the nonlinear kinetic Fokker-Planck equation in order to give a correct Prandtl number in the Navier-Stokes limit. Due to the diffusion coefficient is replaced by a non diagonal temperature tensor, this makes the linearized operator for the nonlinear kinetic ellipsoidal Fokker-Planck equation with more complicated form. By taking advantage of the H-1 type hypocoercivity techniques, we prove that the solutions converge exponential to the equilibrium with explicit rates. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条