Semigroup decay for the linearized kinetic ellipsoidal Fokker-Planck equation

被引:0
|
作者
Sun, Baoyan [1 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Kinetic ellipsoidal Fokker-Planck; equation; Hypocoercivity; Spectral gap; Semigroup; Exponential decay; BOLTZMANN-EQUATION; SPECTRUM ANALYSIS; BGK MODEL; HYPOCOERCIVITY; EQUILIBRIUM; RELAXATION; CONVERGENCE;
D O I
10.1016/j.jmaa.2022.126780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the semigroup decay for the linearized kinetic ellipsoidal Fokker-Planck equation in the torus. This model is an extension of the nonlinear kinetic Fokker-Planck equation in order to give a correct Prandtl number in the Navier-Stokes limit. Due to the diffusion coefficient is replaced by a non diagonal temperature tensor, this makes the linearized operator for the nonlinear kinetic ellipsoidal Fokker-Planck equation with more complicated form. By taking advantage of the H-1 type hypocoercivity techniques, we prove that the solutions converge exponential to the equilibrium with explicit rates. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The differential equation of Fokker-Planck
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064
  • [22] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [23] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724
  • [24] A SOLUTION OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    PHYSICA A, 1990, 167 (03): : 877 - 886
  • [25] THE THERMALIZED FOKKER-PLANCK EQUATION
    FRISCH, HL
    NOWAKOWSKI, B
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (11): : 8963 - 8969
  • [26] Computation of Fokker-Planck equation
    Yau, SST
    QUARTERLY OF APPLIED MATHEMATICS, 2004, 62 (04) : 643 - 650
  • [27] On Derivation of Fokker-Planck Equation
    Tanatarov, L. V.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2013, 35 (01): : 95 - 111
  • [28] EXTENSION OF FOKKER-PLANCK EQUATION
    PRICE, JC
    PHYSICS OF FLUIDS, 1966, 9 (12) : 2408 - &
  • [29] QUANTUM FOKKER-PLANCK EQUATION
    CHANG, LD
    WAXMAN, D
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (31): : 5873 - 5879
  • [30] PROPERTIES OF FOKKER-PLANCK EQUATION
    LIBOFF, RL
    FEDELE, JB
    PHYSICS OF FLUIDS, 1967, 10 (07) : 1391 - +