Semigroup decay for the linearized kinetic ellipsoidal Fokker-Planck equation

被引:0
|
作者
Sun, Baoyan [1 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Kinetic ellipsoidal Fokker-Planck; equation; Hypocoercivity; Spectral gap; Semigroup; Exponential decay; BOLTZMANN-EQUATION; SPECTRUM ANALYSIS; BGK MODEL; HYPOCOERCIVITY; EQUILIBRIUM; RELAXATION; CONVERGENCE;
D O I
10.1016/j.jmaa.2022.126780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the semigroup decay for the linearized kinetic ellipsoidal Fokker-Planck equation in the torus. This model is an extension of the nonlinear kinetic Fokker-Planck equation in order to give a correct Prandtl number in the Navier-Stokes limit. Due to the diffusion coefficient is replaced by a non diagonal temperature tensor, this makes the linearized operator for the nonlinear kinetic ellipsoidal Fokker-Planck equation with more complicated form. By taking advantage of the H-1 type hypocoercivity techniques, we prove that the solutions converge exponential to the equilibrium with explicit rates. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] PROPERTY OF FOKKER-PLANCK EQUATION
    COMBIS, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (06): : 473 - 476
  • [32] Quasicontinuum Fokker-Planck equation
    Alexander, Francis J.
    Rosenau, Philip
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [33] Lattice Fokker-Planck equation
    Succi, S.
    Melchionna, S.
    Hansen, J. -P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (04): : 459 - 470
  • [34] COVARIANCE OF THE FOKKER-PLANCK EQUATION
    GARRIDO, L
    PHYSICA A, 1980, 100 (01): : 140 - 152
  • [35] On Quantum Fokker-Planck Equation
    Yano, Ryosuke
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (01) : 231 - 247
  • [36] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [37] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [38] FRACTIONAL FOKKER-PLANCK EQUATION
    Tristani, Isabelle
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1243 - 1260
  • [39] INPAINTING WITH FOKKER-PLANCK EQUATION
    Ignat, Anca
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (03): : 225 - 233
  • [40] A Kinetic Model for Gas Mixtures Based on a Fokker-Planck Equation
    Gorji, Hossein
    Jenny, Patrick
    1ST EUROPEAN CONFERENCE ON GAS MICRO FLOWS (GASMEMS 2012), 2012, 362