Semigroup decay for the linearized kinetic ellipsoidal Fokker-Planck equation

被引:0
|
作者
Sun, Baoyan [1 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Kinetic ellipsoidal Fokker-Planck; equation; Hypocoercivity; Spectral gap; Semigroup; Exponential decay; BOLTZMANN-EQUATION; SPECTRUM ANALYSIS; BGK MODEL; HYPOCOERCIVITY; EQUILIBRIUM; RELAXATION; CONVERGENCE;
D O I
10.1016/j.jmaa.2022.126780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the semigroup decay for the linearized kinetic ellipsoidal Fokker-Planck equation in the torus. This model is an extension of the nonlinear kinetic Fokker-Planck equation in order to give a correct Prandtl number in the Navier-Stokes limit. Due to the diffusion coefficient is replaced by a non diagonal temperature tensor, this makes the linearized operator for the nonlinear kinetic ellipsoidal Fokker-Planck equation with more complicated form. By taking advantage of the H-1 type hypocoercivity techniques, we prove that the solutions converge exponential to the equilibrium with explicit rates. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Subexponential decay in kinetic Fokker-Planck equation: Weak hypocoercivity
    Hu, Shulan
    Wang, Xinyu
    BERNOULLI, 2019, 25 (01) : 174 - 188
  • [2] EXPANSION THEOREM FOR LINEARIZED FOKKER-PLANCK EQUATION
    LEWIS, JD
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (04) : 791 - &
  • [3] Dispersion relations for the linearized Fokker-Planck equation
    Degond, P
    Lemou, M
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) : 137 - 167
  • [4] Dispersion Relations for the Linearized Fokker-Planck Equation
    P. Degond
    M. Lemou
    Archive for Rational Mechanics and Analysis, 1997, 138 : 137 - 167
  • [5] DISPERSION-RELATIONS OF THE LINEARIZED FOKKER-PLANCK EQUATION
    DEGOND, P
    LEMOU, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (04): : 413 - 417
  • [6] The kinetic Fokker-Planck equation with general force
    Cao, Chuqi
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 2293 - 2337
  • [7] VARIATIONAL METHODS FOR THE KINETIC FOKKER-PLANCK EQUATION
    Albritton, Dallas
    Armstrong, Scott
    Mourrat, Jean-Christophe
    Movack, Matthew
    ANALYSIS & PDE, 2024, 17 (06):
  • [8] Solving the Fokker-Planck kinetic equation on a lattice
    Moroni, Daniele
    Rotenberg, Benjamin
    Hansen, Jean-Pierre
    Succi, Sauro
    Melchionna, Simone
    PHYSICAL REVIEW E, 2006, 73 (06)
  • [9] ON A RELATIVISTIC FOKKER-PLANCK EQUATION IN KINETIC THEORY
    Antonio Alcantara, Jose
    Calogero, Simone
    KINETIC AND RELATED MODELS, 2011, 4 (02) : 401 - 426
  • [10] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &