Harmonic Dipoles and the Relaxation of the Neo-Hookean Energy in 3D Elasticity

被引:6
|
作者
Barchiesi, Marco [1 ]
Henao, Duvan [2 ,3 ,4 ]
Mora-Corral, Carlos [5 ,6 ]
Rodiac, Remy [7 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Geosci, Via Weiss 2, I-34128 Trieste, Italy
[2] Pontificia Univ Catolica Chile, Fac Math, Santiago 4860, Chile
[3] Pontificia Univ Catolica Chile, Inst Math & Computat Engn, Santiago 4860, Chile
[4] Univ OHiggins, Inst Ciencias Ingn, Rancagua, Chile
[5] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[6] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[7] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
基金
欧洲研究理事会;
关键词
EXISTENCE THEOREMS; DEFORMATIONS; DETERMINANTS; MINIMIZERS; MAPS;
D O I
10.1007/s00205-023-01897-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimizing the neo-Hookean energy in 3D. The difficulty of this problem is that the space of maps without cavitation is not compact, as shown by Conti & De Lellis with a pathological example involving a dipole. In order to rule out this behaviour we consider the relaxation of the neo-Hookean energy in the space of axisymmetric maps without cavitation. We propose a minimization space and a new explicit energy penalizing the creation of dipoles. This new energy, which is a lower bound of the relaxation of the original energy, bears strong similarities with the relaxed energy of Bethuel-Brezis-Helein in the context of harmonic maps into the sphere.
引用
收藏
页数:46
相关论文
共 50 条
  • [41] Automated Liver Elasticity Calculation for 3D MRE
    Dzyubak, Bogdan
    Glaser, Kevin J.
    Manduca, Armando
    Ehman, Richard L.
    MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [42] Integration of 3D boundary elements for static elasticity
    Dyka, C.T.
    Remondi, A.M.
    Millwater, H.R.
    Proceedings of the International Symposium on Boundary Element Methods: Advances in Solid and Fluid Mechanics, 1990,
  • [43] A new transducer for 3D harmonic imaging
    Voormolen, MM
    Bouakaz, A
    Krenning, J
    Lancée, CT
    ten Cate, FJ
    Roelandt, JRTC
    van der Steen, AFW
    de Jong, N
    2002 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2002, : 1261 - 1264
  • [44] On 3D Riesz systems of harmonic conjugates
    Avetisyan, K.
    Guerlebeck, K.
    Morais, J.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 441 - 445
  • [45] Harmonic silhouette matching for 3D models
    Makadia, Ameesh
    Visontai, Mirko
    Daniilidis, Kostas
    2007 3DTV CONFERENCE, 2007, : 411 - 414
  • [46] Feasibility of 3D harmonic contrast imaging
    Voormolen, MM
    Bouakaz, A
    Krenning, BJ
    Lancée, CT
    ten Cate, FJ
    de Jong, N
    ULTRASONICS, 2004, 42 (1-9) : 739 - 743
  • [47] LOCALIZATION DEPENDENCE OF THE RELAXATION ENERGY OF ARSENIC 3D CORE EXCITATIONS IN GAAS(110)
    ZURCHER, P
    LAPEYRE, GJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (03): : 221 - 221
  • [48] 3D Myocardial Mechanical Wave Measurements Toward In Vivo 3D Myocardial Elasticity Mapping
    Salles, Sebastien
    Espeland, Torvald
    Molares, Alfonso
    Aase, Svein Arne
    Hammer, Tommy Arild
    Stoylen, Asbjorn
    Aakhus, Svend
    Lovstakken, Lasse
    Torp, Hans
    JACC-CARDIOVASCULAR IMAGING, 2021, 14 (08) : 1495 - 1505
  • [49] Disturbance Relaxation for 3D Flash Memory
    Chang, Yu-Ming
    Chang, Yuan-Hao
    Kuo, Tei-Wei
    Li, Yung-Chun
    Li, Hsiang-Pang
    IEEE TRANSACTIONS ON COMPUTERS, 2016, 65 (05) : 1467 - 1483
  • [50] RELAXATION FUNCTION OF 3D XY MODEL
    LEE, MH
    DEKEYSER, R
    PHYSICA B & C, 1977, 86 (JAN-M): : 1273 - 1274