Harmonic Dipoles and the Relaxation of the Neo-Hookean Energy in 3D Elasticity

被引:6
|
作者
Barchiesi, Marco [1 ]
Henao, Duvan [2 ,3 ,4 ]
Mora-Corral, Carlos [5 ,6 ]
Rodiac, Remy [7 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Geosci, Via Weiss 2, I-34128 Trieste, Italy
[2] Pontificia Univ Catolica Chile, Fac Math, Santiago 4860, Chile
[3] Pontificia Univ Catolica Chile, Inst Math & Computat Engn, Santiago 4860, Chile
[4] Univ OHiggins, Inst Ciencias Ingn, Rancagua, Chile
[5] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[6] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[7] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
基金
欧洲研究理事会;
关键词
EXISTENCE THEOREMS; DEFORMATIONS; DETERMINANTS; MINIMIZERS; MAPS;
D O I
10.1007/s00205-023-01897-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimizing the neo-Hookean energy in 3D. The difficulty of this problem is that the space of maps without cavitation is not compact, as shown by Conti & De Lellis with a pathological example involving a dipole. In order to rule out this behaviour we consider the relaxation of the neo-Hookean energy in the space of axisymmetric maps without cavitation. We propose a minimization space and a new explicit energy penalizing the creation of dipoles. This new energy, which is a lower bound of the relaxation of the original energy, bears strong similarities with the relaxed energy of Bethuel-Brezis-Helein in the context of harmonic maps into the sphere.
引用
收藏
页数:46
相关论文
共 50 条
  • [31] 3D contrast harmonic echocardiography
    Voormolen , MM
    Bouakaz, A
    Krenning, BJ
    Lancée, CT
    van den Bosch, AE
    Vletter, WB
    ten Cate, FJ
    van der Steen, AFW
    de Jong, N
    2004 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-3, 2004, : 114 - 117
  • [32] Noncommutative 3D harmonic oscillator
    Smailagic, A
    Spallucci, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (26): : L363 - L368
  • [33] Combined elasticity and 3D imaging of the prostate
    Li, YB
    Patil, A
    Hossack, JA
    2005 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4, 2005, : 1435 - 1438
  • [34] Combined elasticity and 3D imaging of the prostate
    Li, YB
    Hossack, JA
    Medical Imaging 2005: Ultrasonic Imaging and Signal Processing, 2005, 5750 : 7 - 15
  • [35] Vibro-Elastography: Absolute Elasticity from Motorized 3D Ultrasound Measurements of Harmonic Motion Vectors
    Abeysekera, Jeffrey
    Rohling, Robert
    Salcudean, Septimiu
    2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2015,
  • [36] An energy error-based method for the resolution of the Cauchy problem in 3D linear elasticity
    Andrieux, Stephane
    Baranger, Thouraya N.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (9-12) : 902 - 920
  • [37] Spherical Harmonic Energy Over Gaussian Sphere for Incomplete 3D Shape Retrieval
    Li, Jia
    Li, Zikuan
    Lin, Huan
    Chen, Renxi
    Lan, Qiuping
    IEEE ACCESS, 2020, 8 : 183117 - 183126
  • [38] 3D Elasticity Imaging With Acoustic Radiation Force
    Nightingale, Kathryn R.
    Rouze, Ned C.
    Wang, Michael H.
    Rosenzweig, Stephen J.
    Palmeri, Mark L.
    2013 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2013, : 527 - 532
  • [39] The influence of matrix elasticity on chondrocyte behavior in 3D
    Schuh, Elena
    Hofmann, Sandra
    Stok, Kathryn S.
    Notbohm, Holger
    Mueller, Ralph
    Rotter, Nicole
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 (10) : e31 - e42
  • [40] A DOMAIN DECOMPOSITION METHOD FOR 3D ELASTICITY PROBLEMS
    CHEN, HC
    SAMEH, AH
    APPLICATIONS OF SUPERCOMPUTERS IN ENGINEERING : FLUID FLOW AND STRESS ANALYSIS APPLICATIONS, 1989, : 171 - 188