Harmonic Dipoles and the Relaxation of the Neo-Hookean Energy in 3D Elasticity

被引:6
|
作者
Barchiesi, Marco [1 ]
Henao, Duvan [2 ,3 ,4 ]
Mora-Corral, Carlos [5 ,6 ]
Rodiac, Remy [7 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Geosci, Via Weiss 2, I-34128 Trieste, Italy
[2] Pontificia Univ Catolica Chile, Fac Math, Santiago 4860, Chile
[3] Pontificia Univ Catolica Chile, Inst Math & Computat Engn, Santiago 4860, Chile
[4] Univ OHiggins, Inst Ciencias Ingn, Rancagua, Chile
[5] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[6] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[7] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
基金
欧洲研究理事会;
关键词
EXISTENCE THEOREMS; DEFORMATIONS; DETERMINANTS; MINIMIZERS; MAPS;
D O I
10.1007/s00205-023-01897-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimizing the neo-Hookean energy in 3D. The difficulty of this problem is that the space of maps without cavitation is not compact, as shown by Conti & De Lellis with a pathological example involving a dipole. In order to rule out this behaviour we consider the relaxation of the neo-Hookean energy in the space of axisymmetric maps without cavitation. We propose a minimization space and a new explicit energy penalizing the creation of dipoles. This new energy, which is a lower bound of the relaxation of the original energy, bears strong similarities with the relaxed energy of Bethuel-Brezis-Helein in the context of harmonic maps into the sphere.
引用
收藏
页数:46
相关论文
共 50 条
  • [21] Modelling the Inflation and Elastic Instabilities of Rubber-Like Spherical and Cylindrical Shells Using a New Generalised Neo-Hookean Strain Energy Function
    Afshin Anssari-Benam
    Andrea Bucchi
    Giuseppe Saccomandi
    Journal of Elasticity, 2022, 151 : 15 - 45
  • [22] A nonlinear 1-D finite element analysis of rods/tubes made of incompressible neo-Hookean materials using higher-order theory
    Arbind, A.
    Reddy, J. N.
    Srinivasa, A. R.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 166 : 1 - 21
  • [23] Energy relaxation and vibrations in small 3D plasma clusters
    Antonova, T.
    Annaratone, B. M.
    Thomas, H. M.
    Morfill, G. E.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [24] Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity
    Lewicka, Marta
    Mora, Maria Giovanna
    Pakzad, Mohammad Reza
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2010, 9 (02) : 253 - 295
  • [25] Inductive electromagnetic data interpretation using a 3D distribution of 3D magnetic or electric dipoles
    Kolaj, Michal
    Smith, Richard
    GEOPHYSICS, 2017, 82 (04) : E187 - E195
  • [26] THE MACROSCOPIC ELASTICITY OF 3D WOVEN COMPOSITES
    COX, BN
    DADKHAH, MS
    JOURNAL OF COMPOSITE MATERIALS, 1995, 29 (06) : 785 - 819
  • [27] GLOBAL EXISTENCE OF SMALL DISPLACEMENT SOLUTIONS FOR HOOKEAN INCOMPRESSIBLE VISCOELASTICITY IN 3D
    Jonov, Boyan
    Kessenich, Paul
    Sideris, Thomas C.
    KINETIC AND RELATED MODELS, 2022, 15 (04) : 621 - 649
  • [28] Microstructures to Control Elasticity in 3D Printing
    Schumacher, Christian
    Bickel, Bernd
    Rys, Jan
    Marschner, Steve
    Daraio, Chiara
    Gross, Markus
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [29] 3D BEM for general anisotropic elasticity
    Wang, C. -Y.
    Denda, M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (22-23) : 7073 - 7091
  • [30] MPI solver for 3D elasticity problems
    Lirkov, I
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 61 (3-6) : 509 - 516