EMBEDDINGS AND RELATED TOPICS IN GRAND VARIABLE EXPONENT HAJŁASZ-MORREY-SOBOLEV SPACES

被引:0
|
作者
Edmunds, David E. [1 ]
Makharadze, Dali [2 ]
Meskhi, Alexander [3 ,4 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
[2] Batumi Shota Rustaveli State Univ, Dept Math, 32-35 Rustaveli Ninoshvili St, Batumi 6010, Georgia
[3] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, Dept Math Anal, 6 Tamarashvili Str, Tbilisi 0177, Georgia
[4] Kutaisi Int Univ, Youth Ave Turn 5-7, Kutaisi 4600, Georgia
来源
关键词
Grand variable exponent Hajlasz-Morrey-Sobolev spaces; variable exponent Holder spaces; quasi-metric measure spaces; embeddings; fractional integral operator; SOBOLEV SPACES; MAXIMAL FUNCTIONS; MORREY SPACES; POTENTIALS; LEBESGUE;
D O I
10.7153/mia-2024-27-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Embeddings in the framework of grand variable exponent function spaces are studied. In particular, embeddings from grand variable exponent Hajlasz-Sobolev-Morrey spaces to variable exponent H center dot older spaces are established. The regularity of a fractional integral operator defined with respect to a non-doubling measure is also investigated. In particular, mapping properties of this operator from a grand variable exponent Morrey space to a grand variable parameter H center dot older space are studied. The results are proved under the log-H center dot older continuity condition on the exponents. The spaces are defined, generally speaking, on quasi-metric measure spaces, however, the results are new even for Euclidean spaces.
引用
收藏
页码:201 / 217
页数:17
相关论文
共 50 条
  • [21] Generalized Hajłasz–Sobolev classes on ultrametric measure spaces with doubling condition
    E. V. Gubkina
    M. A. Prokhorovich
    Ya. M. Radyna
    Siberian Mathematical Journal, 2015, 56 : 822 - 826
  • [22] Boundedness of Operators of Harmonic Analysis in Grand Variable Exponent Morrey Spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [23] Density, Duality and Preduality in Grand Variable Exponent Lebesgue and Morrey Spaces
    Meskhi, Alexander
    Sawano, Yoshihiro
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [24] Boundedness of Operators of Harmonic Analysis in Grand Variable Exponent Morrey Spaces
    Vakhtang Kokilashvili
    Alexander Meskhi
    Mediterranean Journal of Mathematics, 2023, 20
  • [25] Sobolev embeddings with variable exponent, II
    Edmunds, DE
    Rákosník, J
    MATHEMATISCHE NACHRICHTEN, 2002, 246 : 53 - 67
  • [26] Sobolev-type inequalities on variable exponent Morrey spaces of an integral form
    Ohno, Takao
    Shimomura, Tetsu
    RICERCHE DI MATEMATICA, 2022, 71 (01) : 189 - 204
  • [27] SOBOLEV'S THEOREM AND DUALITY FOR HERZ-MORREY SPACES OF VARIABLE EXPONENT
    Mizuta, Yoshihiro
    Ohno, Takao
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) : 389 - 416
  • [28] Sobolev-type inequalities on variable exponent Morrey spaces of an integral form
    Takao Ohno
    Tetsu Shimomura
    Ricerche di Matematica, 2022, 71 : 189 - 204
  • [29] Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (01): : 12 - 36
  • [30] Variable exponent Morrey and Campanato spaces
    Fan, Xianling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (11) : 4148 - 4161