EMBEDDINGS AND RELATED TOPICS IN GRAND VARIABLE EXPONENT HAJŁASZ-MORREY-SOBOLEV SPACES

被引:0
|
作者
Edmunds, David E. [1 ]
Makharadze, Dali [2 ]
Meskhi, Alexander [3 ,4 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
[2] Batumi Shota Rustaveli State Univ, Dept Math, 32-35 Rustaveli Ninoshvili St, Batumi 6010, Georgia
[3] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, Dept Math Anal, 6 Tamarashvili Str, Tbilisi 0177, Georgia
[4] Kutaisi Int Univ, Youth Ave Turn 5-7, Kutaisi 4600, Georgia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2024年 / 27卷 / 01期
关键词
Grand variable exponent Hajlasz-Morrey-Sobolev spaces; variable exponent Holder spaces; quasi-metric measure spaces; embeddings; fractional integral operator; SOBOLEV SPACES; MAXIMAL FUNCTIONS; MORREY SPACES; POTENTIALS; LEBESGUE;
D O I
10.7153/mia-2024-27-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Embeddings in the framework of grand variable exponent function spaces are studied. In particular, embeddings from grand variable exponent Hajlasz-Sobolev-Morrey spaces to variable exponent H center dot older spaces are established. The regularity of a fractional integral operator defined with respect to a non-doubling measure is also investigated. In particular, mapping properties of this operator from a grand variable exponent Morrey space to a grand variable parameter H center dot older space are studied. The results are proved under the log-H center dot older continuity condition on the exponents. The spaces are defined, generally speaking, on quasi-metric measure spaces, however, the results are new even for Euclidean spaces.
引用
收藏
页码:201 / 217
页数:17
相关论文
共 50 条
  • [11] Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) : 671 - 695
  • [12] OPERATORS OF HARMONIC ANALYSIS IN GRAND VARIABLE EXPONENT MORREY SPACES
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2022, 176 (01) : 147 - 152
  • [13] Sobolev embeddings with variable exponent
    Edmunds, DE
    Rákosník, J
    STUDIA MATHEMATICA, 2000, 143 (03) : 267 - 293
  • [14] Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in Rn
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    REVISTA MATEMATICA COMPLUTENSE, 2012, 25 (02): : 413 - 434
  • [15] COMPACT EMBEDDINGS ON A SUBSPACE OF WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES
    Unal, Cihan
    Aydin, Ismail
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02) : 388 - 405
  • [16] Sobolev embeddings for variable exponent Riesz potentials on metric spaces
    Futamura, Toshihide
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2006, 31 (02) : 495 - 522
  • [17] EMBEDDINGS AND REGULARITY OF POTENTIALS IN GRAND VARIABLE EXPONENT FUNCTION SPACES
    Edmunds, David E.
    Makharadze, Dali
    Meskhi, Alexander
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2023, 177 (02) : 309 - 314
  • [18] Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces
    Ohno, Takao
    Shimomura, Tetsu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (01) : 209 - 228
  • [19] Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces
    Takao Ohno
    Tetsu Shimomura
    Czechoslovak Mathematical Journal, 2014, 64 : 209 - 228
  • [20] Density, Duality and Preduality in Grand Variable Exponent Lebesgue and Morrey Spaces
    Alexander Meskhi
    Yoshihiro Sawano
    Mediterranean Journal of Mathematics, 2018, 15