EMBEDDINGS AND RELATED TOPICS IN GRAND VARIABLE EXPONENT HAJŁASZ-MORREY-SOBOLEV SPACES

被引:0
|
作者
Edmunds, David E. [1 ]
Makharadze, Dali [2 ]
Meskhi, Alexander [3 ,4 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
[2] Batumi Shota Rustaveli State Univ, Dept Math, 32-35 Rustaveli Ninoshvili St, Batumi 6010, Georgia
[3] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, Dept Math Anal, 6 Tamarashvili Str, Tbilisi 0177, Georgia
[4] Kutaisi Int Univ, Youth Ave Turn 5-7, Kutaisi 4600, Georgia
来源
关键词
Grand variable exponent Hajlasz-Morrey-Sobolev spaces; variable exponent Holder spaces; quasi-metric measure spaces; embeddings; fractional integral operator; SOBOLEV SPACES; MAXIMAL FUNCTIONS; MORREY SPACES; POTENTIALS; LEBESGUE;
D O I
10.7153/mia-2024-27-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Embeddings in the framework of grand variable exponent function spaces are studied. In particular, embeddings from grand variable exponent Hajlasz-Sobolev-Morrey spaces to variable exponent H center dot older spaces are established. The regularity of a fractional integral operator defined with respect to a non-doubling measure is also investigated. In particular, mapping properties of this operator from a grand variable exponent Morrey space to a grand variable parameter H center dot older space are studied. The results are proved under the log-H center dot older continuity condition on the exponents. The spaces are defined, generally speaking, on quasi-metric measure spaces, however, the results are new even for Euclidean spaces.
引用
收藏
页码:201 / 217
页数:17
相关论文
共 50 条
  • [1] Several equivalent characterizations of fractional Hajłasz-Morrey-Sobolev spaces
    Wen Yuan
    Yu-feng Lu
    Da-chun Yang
    Applied Mathematics-A Journal of Chinese Universities, 2016, 31 : 343 - 354
  • [2] Sobolev Embeddings for Fractional Hajłasz-Sobolev Spaces in the Setting of Rearrangement Invariant Spaces
    Joaquim Martín
    Walter A. Ortiz
    Potential Analysis, 2023, 59 : 1191 - 1204
  • [3] Sobolev embeddings in grand Morrey spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2367 - 2381
  • [4] Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (02) : 583 - 602
  • [5] Grand Herz–Morrey Spaces with Variable Exponent
    M. Sultan
    B. Sultan
    A. Hussain
    Mathematical Notes, 2023, 114 : 957 - 977
  • [6] New characterizations of Hajłasz-Sobolev spaces on metric spaces
    Dachun Yang
    Science in China Series A: Mathematics, 2003, 46 : 675 - 689
  • [7] Embeddings in Grand Variable Exponent Function Spaces
    Edmunds, David E.
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [8] Embeddings in Grand Variable Exponent Function Spaces
    David E. Edmunds
    Vakhtang Kokilashvili
    Alexander Meskhi
    Results in Mathematics, 2021, 76
  • [9] On embeddings of grand grand Sobolev-Morrey spaces with dominant mixed derivatives
    Najafov, Alik M.
    Babayev, Rovshan F.
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (01) : 1 - 10
  • [10] Grand Herz-Morrey Spaces with Variable Exponent
    Sultan, M.
    Sultan, B.
    Hussain, A.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 957 - 977