On the robustness of the constancy of the Supernova absolute magnitude: Non-parametric reconstruction & Bayesian approaches

被引:21
|
作者
Benisty, David [1 ,2 ]
Mifsud, Jurgen [3 ,4 ]
Said, Jackson Levi [3 ,4 ]
Staicova, Denitsa [5 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Cambridge, Kavli Inst Cosmol KICC, Madingley Rd, Cambridge CB3 0HA, England
[3] Univ Malta, Inst Space Sci & Astron, Msida 2080, Malta
[4] Univ Malta, Dept Phys, Msida 2080, Malta
[5] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria
来源
关键词
Dark energy; Absolute magnitude variation; Machine learning in cosmology; BARYON ACOUSTIC-OSCILLATIONS; DISTANCE DUALITY RELATION; DARK ENERGY; HUBBLE CONSTANT; CROSS-CORRELATION; LAMBDA-CDM; CONSTRAINTS; REDSHIFT; MODEL; GALAXIES;
D O I
10.1016/j.dark.2022.101160
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we test the robustness of the constancy of the Supernova absolute magnitude MB using Non-parametric Reconstruction Techniques (NRT). We isolate the luminosity distance parameter dL(z) from the Baryon Acoustic Oscillations (BAO) data set and cancel the expansion part from the observed distance modulus mu(z). Consequently, the degeneracy between the absolute magnitude and the Hubble constant H0, is replaced by a degeneracy between MB and the sound horizon at drag epoch rd. When imposing the rd value, this yields the MB(z) = MB +8MB(z) value from NRT. We perform the respective reconstructions using the model independent Artificial Neural Network (ANN) technique and Gaussian processes (GP) regression. For the ANN we infer MB = -19.22 +/- 0.20, and for the GP we get MB = -19.25 +/- 0.39 as a mean for the full distribution when using the sound horizon from late time measurements. These estimations provide a 1 sigma possibility of a nuisance parameter presence 8MB(z) at higher redshifts. We also tested different known nuisance models with the Markov Chain Monte Carlo (MCMC) technique which showed a strong preference for the constant model, but it was not possible not single out a best fit nuisance model.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A Non-parametric Bayesian Network Prior of Human Pose
    Lehrmann, Andreas M.
    Gehler, Peter V.
    Nowozin, Sebastian
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1281 - 1288
  • [42] Bayesian non-parametric models for regional prevalence estimation
    Branscum, Adam J.
    Hanson, Timothy E.
    Gardner, Ian A.
    JOURNAL OF APPLIED STATISTICS, 2008, 35 (05) : 567 - 582
  • [43] Non-parametric Bayesian analysis of clustered survival data
    Lee, Jaeyong
    STATISTICS, 2008, 42 (06) : 515 - 526
  • [44] BAYESIAN NON-PARAMETRIC DETECTOR BASED ON THE REPLACEMENT MODEL
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 871 - 874
  • [45] Non-parametric Bayesian estimation of a spatial Poisson intensity
    Heikkinen, J
    Arjas, E
    SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) : 435 - 450
  • [46] Statistics for N = 1: A Non-Parametric Bayesian Approach
    Leppink, Jimmie
    SCIENTIA MEDICA, 2020, 30 (01)
  • [47] A NON-PARAMETRIC BAYESIAN CLUSTERING FOR GENE EXPRESSION DATA
    Wang, Liming
    Wang, Xiaodong
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 556 - 559
  • [48] A Bayesian approach to non-parametric monotone function estimation
    Shively, Thomas S.
    Sager, Thomas W.
    Walker, Stephen G.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 159 - 175
  • [49] Non-parametric Bayesian inference of strategies in repeated games
    Kleiman-Weiner, Max
    Tenenbaum, Joshua B.
    Zhou, Penghui
    ECONOMETRICS JOURNAL, 2018, 21 (03): : 298 - 315
  • [50] A Bayesian non-parametric model for small population mortality
    Li, Hong
    Lu, Yang
    SCANDINAVIAN ACTUARIAL JOURNAL, 2018, (07) : 605 - 628