On the robustness of the constancy of the Supernova absolute magnitude: Non-parametric reconstruction & Bayesian approaches

被引:21
|
作者
Benisty, David [1 ,2 ]
Mifsud, Jurgen [3 ,4 ]
Said, Jackson Levi [3 ,4 ]
Staicova, Denitsa [5 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Cambridge, Kavli Inst Cosmol KICC, Madingley Rd, Cambridge CB3 0HA, England
[3] Univ Malta, Inst Space Sci & Astron, Msida 2080, Malta
[4] Univ Malta, Dept Phys, Msida 2080, Malta
[5] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria
来源
关键词
Dark energy; Absolute magnitude variation; Machine learning in cosmology; BARYON ACOUSTIC-OSCILLATIONS; DISTANCE DUALITY RELATION; DARK ENERGY; HUBBLE CONSTANT; CROSS-CORRELATION; LAMBDA-CDM; CONSTRAINTS; REDSHIFT; MODEL; GALAXIES;
D O I
10.1016/j.dark.2022.101160
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we test the robustness of the constancy of the Supernova absolute magnitude MB using Non-parametric Reconstruction Techniques (NRT). We isolate the luminosity distance parameter dL(z) from the Baryon Acoustic Oscillations (BAO) data set and cancel the expansion part from the observed distance modulus mu(z). Consequently, the degeneracy between the absolute magnitude and the Hubble constant H0, is replaced by a degeneracy between MB and the sound horizon at drag epoch rd. When imposing the rd value, this yields the MB(z) = MB +8MB(z) value from NRT. We perform the respective reconstructions using the model independent Artificial Neural Network (ANN) technique and Gaussian processes (GP) regression. For the ANN we infer MB = -19.22 +/- 0.20, and for the GP we get MB = -19.25 +/- 0.39 as a mean for the full distribution when using the sound horizon from late time measurements. These estimations provide a 1 sigma possibility of a nuisance parameter presence 8MB(z) at higher redshifts. We also tested different known nuisance models with the Markov Chain Monte Carlo (MCMC) technique which showed a strong preference for the constant model, but it was not possible not single out a best fit nuisance model.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Non-parametric reconstruction of cosmological matter perturbations
    Gonzalez, J. E.
    Alcaniz, J. S.
    Carvalho, J. C.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (04):
  • [32] Parametric and Non-parametric Bayesian Imputation for Right Censored Survival Data
    Moghaddam, Shirin
    Newell, John
    Hinde, John
    DEVELOPMENTS IN STATISTICAL MODELLING, IWSM 2024, 2024, : 153 - 158
  • [33] Modelling stochastic order in the analysis of receiver operating characteristic data: Bayesian non-parametric approaches
    Hanson, Timothy E.
    Kottas, Athanasios
    Branscum, Adam J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 : 207 - 225
  • [34] Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method
    Koskela, Jere
    Jenkins, Paul A.
    Spano, Dario
    BERNOULLI, 2018, 24 (03) : 2122 - 2153
  • [35] Bayesian Non-Parametric Parsimonious Gaussian Mixture for Clustering
    Chamroukhi, Faicel
    Bartcus, Marius
    Glotin, Herve
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1460 - 1465
  • [36] Bayesian rendering with non-parametric multiscale prior model
    Mignotte, M
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL I, PROCEEDINGS, 2002, : 247 - 250
  • [37] Bayesian non-parametric detection heterogeneity in ecological models
    Daniel Turek
    Claudia Wehrhahn
    Olivier Gimenez
    Environmental and Ecological Statistics, 2021, 28 : 355 - 381
  • [38] Non-parametric and unsupervised Bayesian classification with Bootstrap sampling
    Zribi, M
    IMAGE AND VISION COMPUTING, 2004, 22 (01) : 1 - 8
  • [39] Controlling the reinforcement in Bayesian non-parametric mixture models
    Lijoi, Antonio
    Mena, Ramses H.
    Prunster, Igor
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 715 - 740
  • [40] Marginally specified priors for non-parametric Bayesian estimation
    Kessler, David C.
    Hoff, Peter D.
    Dunson, David B.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 35 - 58