On the robustness of the constancy of the Supernova absolute magnitude: Non-parametric reconstruction & Bayesian approaches

被引:21
|
作者
Benisty, David [1 ,2 ]
Mifsud, Jurgen [3 ,4 ]
Said, Jackson Levi [3 ,4 ]
Staicova, Denitsa [5 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Cambridge, Kavli Inst Cosmol KICC, Madingley Rd, Cambridge CB3 0HA, England
[3] Univ Malta, Inst Space Sci & Astron, Msida 2080, Malta
[4] Univ Malta, Dept Phys, Msida 2080, Malta
[5] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria
来源
关键词
Dark energy; Absolute magnitude variation; Machine learning in cosmology; BARYON ACOUSTIC-OSCILLATIONS; DISTANCE DUALITY RELATION; DARK ENERGY; HUBBLE CONSTANT; CROSS-CORRELATION; LAMBDA-CDM; CONSTRAINTS; REDSHIFT; MODEL; GALAXIES;
D O I
10.1016/j.dark.2022.101160
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we test the robustness of the constancy of the Supernova absolute magnitude MB using Non-parametric Reconstruction Techniques (NRT). We isolate the luminosity distance parameter dL(z) from the Baryon Acoustic Oscillations (BAO) data set and cancel the expansion part from the observed distance modulus mu(z). Consequently, the degeneracy between the absolute magnitude and the Hubble constant H0, is replaced by a degeneracy between MB and the sound horizon at drag epoch rd. When imposing the rd value, this yields the MB(z) = MB +8MB(z) value from NRT. We perform the respective reconstructions using the model independent Artificial Neural Network (ANN) technique and Gaussian processes (GP) regression. For the ANN we infer MB = -19.22 +/- 0.20, and for the GP we get MB = -19.25 +/- 0.39 as a mean for the full distribution when using the sound horizon from late time measurements. These estimations provide a 1 sigma possibility of a nuisance parameter presence 8MB(z) at higher redshifts. We also tested different known nuisance models with the Markov Chain Monte Carlo (MCMC) technique which showed a strong preference for the constant model, but it was not possible not single out a best fit nuisance model.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Efficient Non-parametric Bayesian Hawkes Processes
    Zhang, Rui
    Walder, Christian
    Rizoiu, Marian-Andrei
    Xie, Lexing
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4299 - 4305
  • [22] Non-parametric Bayesian inference on bivariate extremes
    Guillotte, Simon
    Perron, Francois
    Segers, Johan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 377 - 406
  • [23] Spatial non-parametric Bayesian clustered coefficients
    Areed, Wala Draidi
    Price, Aiden
    Thompson, Helen
    Malseed, Reid
    Mengersen, Kerrie
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Robustness for Non-Parametric Classification: A Generic Attack and Defense
    Yang, Yao-Yuan
    Rashtchian, Cyrus
    Wang, Yizhen
    Chaudhuri, Kamalika
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [25] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatiana Tatarinova
    Michael Neely
    Jay Bartroff
    Michael van Guilder
    Walter Yamada
    David Bayard
    Roger Jelliffe
    Robert Leary
    Alyona Chubatiuk
    Alan Schumitzky
    Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 189 - 199
  • [26] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatarinova, Tatiana
    Neely, Michael
    Bartroff, Jay
    van Guilder, Michael
    Yamada, Walter
    Bayard, David
    Jelliffe, Roger
    Leary, Robert
    Chubatiuk, Alyona
    Schumitzky, Alan
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 (02) : 189 - 199
  • [27] NON-PARAMETRIC AND PARAMETRIC APPROACHES TO THE CZECH BUSINESS CYCLE DATING
    Vrana, Lenka
    18TH AMSE: APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMICS, 2015,
  • [28] Comparison of Parametric and Non-Parametric Approaches for Vehicle Speed Prediction
    Lefevre, Stephanie
    Sun, Chao
    Bajcsy, Ruzena
    Laugier, Christian
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 3494 - 3499
  • [29] Non-parametric reconstruction of the cosmological jerk parameter
    Purba Mukherjee
    Narayan Banerjee
    The European Physical Journal C, 2021, 81
  • [30] Non-parametric reconstruction of the cosmological jerk parameter
    Mukherjee, Purba
    Banerjee, Narayan
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (01):