On the robustness of the constancy of the Supernova absolute magnitude: Non-parametric reconstruction & Bayesian approaches

被引:21
|
作者
Benisty, David [1 ,2 ]
Mifsud, Jurgen [3 ,4 ]
Said, Jackson Levi [3 ,4 ]
Staicova, Denitsa [5 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Cambridge, Kavli Inst Cosmol KICC, Madingley Rd, Cambridge CB3 0HA, England
[3] Univ Malta, Inst Space Sci & Astron, Msida 2080, Malta
[4] Univ Malta, Dept Phys, Msida 2080, Malta
[5] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria
来源
关键词
Dark energy; Absolute magnitude variation; Machine learning in cosmology; BARYON ACOUSTIC-OSCILLATIONS; DISTANCE DUALITY RELATION; DARK ENERGY; HUBBLE CONSTANT; CROSS-CORRELATION; LAMBDA-CDM; CONSTRAINTS; REDSHIFT; MODEL; GALAXIES;
D O I
10.1016/j.dark.2022.101160
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we test the robustness of the constancy of the Supernova absolute magnitude MB using Non-parametric Reconstruction Techniques (NRT). We isolate the luminosity distance parameter dL(z) from the Baryon Acoustic Oscillations (BAO) data set and cancel the expansion part from the observed distance modulus mu(z). Consequently, the degeneracy between the absolute magnitude and the Hubble constant H0, is replaced by a degeneracy between MB and the sound horizon at drag epoch rd. When imposing the rd value, this yields the MB(z) = MB +8MB(z) value from NRT. We perform the respective reconstructions using the model independent Artificial Neural Network (ANN) technique and Gaussian processes (GP) regression. For the ANN we infer MB = -19.22 +/- 0.20, and for the GP we get MB = -19.25 +/- 0.39 as a mean for the full distribution when using the sound horizon from late time measurements. These estimations provide a 1 sigma possibility of a nuisance parameter presence 8MB(z) at higher redshifts. We also tested different known nuisance models with the Markov Chain Monte Carlo (MCMC) technique which showed a strong preference for the constant model, but it was not possible not single out a best fit nuisance model.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] RISK MARGIN QUANTILE FUNCTION VIA PARAMETRIC AND NON-PARAMETRIC BAYESIAN APPROACHES
    Dong, Alice X. D.
    Chan, Jennifer S. K.
    Peters, Gareth W.
    ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2015, 45 (03) : 503 - 550
  • [2] Bayesian non-parametric approaches to reconstructing oscillatory systems and the Nyquist limit
    Zurauskiene, Justina
    Kirk, Paul
    Thorne, Thomas
    Stumpf, Michael P. H.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 407 : 33 - 42
  • [3] Non-parametric Bayesian annotator combination
    Servajean, M.
    Chailan, R.
    Joly, A.
    INFORMATION SCIENCES, 2018, 436 : 131 - 145
  • [4] An unsupervised and non-parametric bayesian classifier
    Zribi, M
    Ghorbel, F
    PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 97 - 112
  • [5] Consistent Non-Parametric Methods for Maximizing Robustness
    Bhattacharjee, Robi
    Chaudhuri, Kamalika
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] Robustness of the parametric MLSE algorithm against non-parametric channels
    Chen, JT
    GLOBECOM 98: IEEE GLOBECOM 1998 - CONFERENCE RECORD, VOLS 1-6: THE BRIDGE TO GLOBAL INTEGRATION, 1998, : 142 - 147
  • [7] PARAMETRIC AND NON-PARAMETRIC APPROACHES FOR PREDICTING BACTERIAL RESISTANCE
    Arepieva, M.
    Kolbin, A.
    Kurylev, A.
    Balykina, Y.
    Spiridonova, A.
    Mukhina, N.
    Sidorenko, S.
    VALUE IN HEALTH, 2016, 19 (07) : A441 - A442
  • [8] A BAYESIAN NON-PARAMETRIC APPROACH TO FREQUENCY ESTIMATION
    Favaro, Martina
    Picci, Giorgio
    IFAC PAPERSONLINE, 2015, 48 (28): : 478 - 483
  • [9] Smoothness in Bayesian Non-parametric Regression with Wavelets
    Marco Di Zio
    Arnoldo Frigessi
    Methodology And Computing In Applied Probability, 1999, 1 (4) : 391 - 405
  • [10] A non-parametric Bayesian approach to spike sorting
    Wood, Frank
    Goldwater, Sharon
    Black, Michael J.
    2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 2895 - +