Dephasing Dynamics in a Non-Equilibrium Fluctuating Environment

被引:2
|
作者
Meng, Xiangjia [1 ,2 ]
Sun, Yaxin [3 ]
Wang, Qinglong [3 ]
Ren, Jing [3 ]
Cai, Xiangji [3 ]
Czerwinski, Artur [4 ]
机构
[1] Shandong Youth Univ Polit Sci, Sch Informat Engn, Jinan 250103, Peoples R China
[2] Shandong Youth Univ Polit Sci, New Technol Res & Dev Ctr Intelligent Informat Con, Jinan 250103, Peoples R China
[3] Shandong Jianzhu Univ, Sch Sci, Jinan 250101, Peoples R China
[4] Nicolaus Copernicus Univ Torun, Inst Phys, Fac Phys Astron & Intypeat, ul Grudziadzka 5, PL-87100 Torun, Poland
基金
中国国家自然科学基金;
关键词
open quantum systems; decoherence; non-equilibrium environmental fluctuations; QUANTUM; DECOHERENCE;
D O I
10.3390/e25040634
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We performed a theoretical study of the dephasing dynamics of a quantum two-state system under the influences of a non-equilibrium fluctuating environment. The effect of the environmental non-equilibrium fluctuations on the quantum system is described by a generalized random telegraph noise (RTN) process, of which the statistical properties are both non-stationary and non-Markovian. Due to the time-homogeneous property in the master equations for the multi-time probability distribution, the decoherence factor induced by the generalized RTN with a modulatable-type memory kernel can be exactly derived by means of a closed fourth-order differential equation with respect to time. In some special limit cases, the decoherence factor recovers to the expression of the previous ones. We analyzed in detail the environmental effect of memory modulation in the dynamical dephasing in four types of dynamics regimes. The results showed that the dynamical dephasing of the quantum system and the conversion between the Markovian and non-Markovian characters in the dephasing dynamics under the influence of the generalized RTN can be effectively modulated via the environmental memory kernel.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Strict simulations of non-equilibrium dynamics of colloids
    Yamamoto, Ryoichi
    Kim, Kang
    Nakayama, Yasuya
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2007, 311 (1-3) : 42 - 47
  • [42] Non-equilibrium dynamics of a simple stochastic model
    J Phys A Math Gen, 18 (6245):
  • [43] Non-equilibrium shapes and dynamics of active vesicles
    Iyer, Priyanka
    Gompper, Gerhard
    Fedosov, Dmitry A.
    SOFT MATTER, 2022, 18 (36) : 6868 - 6881
  • [44] Non-equilibrium collective dynamics of a superspin glass
    Sahoo, S
    Petracic, O
    Kleemann, W
    Nordblad, P
    Cardoso, S
    Freitas, PP
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 1316 - 1318
  • [45] Non-equilibrium dynamics of colloids on disordered substrates
    Chen, JX
    Cao, YG
    Jiao, ZK
    PHYSICS LETTERS A, 2003, 318 (1-2) : 146 - 151
  • [46] Non-equilibrium dynamics of stochastic gene regulation
    Anandamohan Ghosh
    Journal of Biological Physics, 2015, 41 : 49 - 58
  • [47] Market Coordination Under Non-Equilibrium Dynamics
    Arnaud Z. Dragicevic
    Networks and Spatial Economics, 2019, 19 : 697 - 715
  • [48] Non-equilibrium dynamics of interacted neural nets
    Chinarov, V
    Gergely, T
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1996, 65 : PG301 - PG301
  • [49] Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands
    Valente, Luis M.
    Phillimore, Albert B.
    Etienne, Rampal S.
    ECOLOGY LETTERS, 2015, 18 (08) : 844 - 852
  • [50] Non-equilibrium dynamics of a simple stochastic model
    Godreche, C
    Luck, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (18): : 6245 - 6272