Dephasing Dynamics in a Non-Equilibrium Fluctuating Environment

被引:2
|
作者
Meng, Xiangjia [1 ,2 ]
Sun, Yaxin [3 ]
Wang, Qinglong [3 ]
Ren, Jing [3 ]
Cai, Xiangji [3 ]
Czerwinski, Artur [4 ]
机构
[1] Shandong Youth Univ Polit Sci, Sch Informat Engn, Jinan 250103, Peoples R China
[2] Shandong Youth Univ Polit Sci, New Technol Res & Dev Ctr Intelligent Informat Con, Jinan 250103, Peoples R China
[3] Shandong Jianzhu Univ, Sch Sci, Jinan 250101, Peoples R China
[4] Nicolaus Copernicus Univ Torun, Inst Phys, Fac Phys Astron & Intypeat, ul Grudziadzka 5, PL-87100 Torun, Poland
基金
中国国家自然科学基金;
关键词
open quantum systems; decoherence; non-equilibrium environmental fluctuations; QUANTUM; DECOHERENCE;
D O I
10.3390/e25040634
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We performed a theoretical study of the dephasing dynamics of a quantum two-state system under the influences of a non-equilibrium fluctuating environment. The effect of the environmental non-equilibrium fluctuations on the quantum system is described by a generalized random telegraph noise (RTN) process, of which the statistical properties are both non-stationary and non-Markovian. Due to the time-homogeneous property in the master equations for the multi-time probability distribution, the decoherence factor induced by the generalized RTN with a modulatable-type memory kernel can be exactly derived by means of a closed fourth-order differential equation with respect to time. In some special limit cases, the decoherence factor recovers to the expression of the previous ones. We analyzed in detail the environmental effect of memory modulation in the dynamical dephasing in four types of dynamics regimes. The results showed that the dynamical dephasing of the quantum system and the conversion between the Markovian and non-Markovian characters in the dephasing dynamics under the influence of the generalized RTN can be effectively modulated via the environmental memory kernel.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Non-equilibrium atomic dynamics in solids
    Rao, KR
    CURRENT SCIENCE, 1998, 75 (12): : 1328 - 1337
  • [22] Interfaces, mixing and non-equilibrium dynamics
    Abarzhi, Snezhana I.
    DISCOVER APPLIED SCIENCES, 2025, 7 (03)
  • [23] Non-equilibrium dynamics for impurities in semiconductors
    Estreicher, S. K.
    Backlund, D.
    Gibbons, T. M.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (22) : 4337 - 4340
  • [24] Reverse non-equilibrium molecular dynamics
    Müller-Plathe, F
    Bordat, P
    NOVEL METHODS IN SOFT MATTER SIMULATIONS, 2004, 640 : 310 - 326
  • [25] NON-EQUILIBRIUM MOLECULAR-DYNAMICS
    HOOVER, WG
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1983, 34 : 103 - 127
  • [26] Non-Equilibrium Interface Dynamics Theory
    Wang, Haifeng
    Pu, Zhenxin
    Zhang, Jianbao
    ACTA METALLURGICA SINICA, 2025, 61 (01)
  • [27] Application of Non-Equilibrium Thermo Field Dynamics to quantum teleportation under the environment
    Kitajima, S.
    Arimitsu, T.
    Obinata, M.
    Yoshida, K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 404 : 242 - 270
  • [28] Equilibrium and Non-Equilibrium Lattice Dynamics of Anharmonic Systems
    Esfarjani, Keivan
    Liang, Yuan
    ENTROPY, 2022, 24 (11)
  • [29] Grazing systems are a result of equilibrium and non-equilibrium dynamics
    Derry, J. F.
    Boone, R. B.
    JOURNAL OF ARID ENVIRONMENTS, 2010, 74 (02) : 307 - 309
  • [30] Steady quantum coherence in non-equilibrium environment
    Li, Sheng-Wen
    Cai, C. Y.
    Sun, C. P.
    ANNALS OF PHYSICS, 2015, 360 : 19 - 32